Blender 是一款免费且开源的 3D 计算机图形软件工具集,能够在多种操作系统上运行,包括 Windows、MacOS、BSD、Haiku、IRIX 和 Linux。它被广泛应用于动画电影制作、视觉特效、艺术创作、3D 打印模型、运动图形、互动 3D 应用程序、虚拟现实等领域,甚至曾经用于视频游戏的开发。Blender 的多功能性使其在全球创意行业中占据了重要地位,尤其是在独立创作者和小型工作室中,成为了不可或缺的工具。
1、Blender 的起源与历史
Blender 的历史可以追溯到上世纪九十年代初。1994年,Blender首次作为荷兰动画工作室 NeoGeo 的内部工具被开发。Blender 的名字来源于瑞士电子乐队 Yello 的一首歌——这首歌出现在该工作室的宣传片中。Blender 的开发由 NeoGeo 的联合创始人 Ton Roosendaal 主导,他之前曾在 Commodore Amiga 平台上为 NeoGeo 开发了另一款名为 Traces 的软件,这一早期经验对 Blender 的设计产生了重要影响。
1998 年 1 月 1 日,Blender 被公开发布为 SGI 免费软件,这标志着它从一个私有工具变成了一个公开的项目。然而,NeoGeo 随后解散,Ton Roosendaal 继续推动 Blender 的开发,并于 1998 年 6 月成立了 Not a Number Technologies(NaN)公司,进一步推进 Blender 的发展。在 NaN 公司破产后,Blender 的开发一度停滞。
2、Blender 基金会与开源运动
2002 年 5 月,Ton Roosendaal 成立了 Blender 基金会,旨在通过社区的支持继续开发 Blender,并将其转变为开源软件。为了资助这一计划,Roosendaal 发起了“Free Blender”运动,目的是通过公众筹款筹集 10 万欧元(当时约 10 万美元)来解锁 Blender 的源代码。这一筹款运动非常成功,并在 2002 年 9 月 7 日宣布达成目标,Blender 随即成为完全开源的软件。
Blender 基金会的成立以及源代码的公开使得 Blender 进入了全新的发展阶段,社区和开发者们纷纷加入到这个项目中,共同推动软件的不断创新和完善。从那时起,Blender 就成为了全球创作者们的开源利器。Blender 的开发工作由全球的志愿者和基金会全职员工共同完成,基金会也为 Blender 提供了坚实的技术和财务支持。
3、Blender 的许可模式与持续改进
Blender 基金会最初曾考虑使用双重许可的方式,即同时提供 GPL 2.0 及 Blender License 许可。Blender License 并不要求公开源代码,但需要对基金会进行支付。然而,这一许可模式从未被实施,且在 2005 年被无限期暂停。Blender 至今仍然是完全开放的 GPL 2.0 许可证下的软件,尽管它的二进制版本在包含 Apache 库后遵循了 GPL 3.0 许可证。
2019 年,Blender 2.80 版本发布,带来了显著的变化,尤其是移除了内置的游戏引擎。Blender 开发者建议用户转向更为强大的开源游戏引擎,如 Godot,引领用户体验更高效的游戏开发流程。
4、Blender 的核心功能与应用
Blender 以其强大的功能和灵活性广受用户欢迎。它不仅是一个专业的 3D 建模工具,还可以用于动画制作、渲染、雕刻、视频编辑、合成、后期处理等领域,涵盖了整个数字创作的工作流程。以下是一些 Blender 的核心功能:
建模:Blender 提供了多种建模工具,包括传统的多边形建模、细分曲面建模、雕刻建模等,使用户能够创建高质量的 3D 模型。
动画:Blender 拥有强大的动画工具,支持关键帧动画、物理模拟、动作捕捉等,能够为静态模型赋予生命。
渲染:Blender 内置的渲染引擎有 Cycles 和 Eevee,前者是一个基于路径追踪的渲染引擎,能够生成高质量的图像;后者是一个实时渲染引擎,适合快速预览和低延迟渲染。
雕刻与纹理:Blender 提供了精细的雕刻工具,用户可以在 3D 模型上进行细节雕刻。此外,它还支持纹理绘制和 PBR(Physically Based Rendering)纹理系统。
视频编辑与合成:Blender 还集成了一个完整的视频编辑器和合成工具,适用于后期制作。用户可以将不同的素材组合、调色,并添加特效,甚至进行 3D 合成。
物理模拟与仿真:Blender 支持各种物理仿真,包括流体、烟雾、布料、粒子、刚体和软体等,帮助创作者模拟真实的自然现象。
5、Blender 的发展与未来
从一个小型动画工作室的内部工具到如今全球创意行业的核心工具,Blender 的发展历史可谓是充满了挑战与奇迹。随着开源社区的不断壮大,Blender 已经逐渐成为全球最受欢迎的 3D 绘图与动画软件之一。它的免费开源性质使得无论是学生、艺术家、独立创作者,还是大公司都可以受益于这款软件。
展望未来,Blender 仍然在不断更新和发展,加入新的功能,优化现有工具,并持续提升其用户体验。随着虚拟现实(VR)、增强现实(AR)以及游戏开发等领域的快速发展,Blender 很可能将在更多的新兴领域中发挥重要作用,成为推动数字创意的核心力量。
二、下载安装 Blender
macOS 系统系统下载 Blender 前的准备
Blender 同时支持 macOS 系统下的 Intel 和 Apple Silicon 架构(M1、M2 等芯片)。在下载之前,请确保选择与您 CPU 架构兼容的版本:Intel 芯片用户:选择适配 Intel 架构的版本。Apple Silicon 芯片用户:选择专为 Apple Silicon 优化的版本,以获得更高的性能。
Blender 的 macOS 版本以磁盘镜像文件(即 dmg 文件)的形式分发。以下是安装步骤:挂载磁盘镜像文件 双击下载的 dmg 文件,系统会自动挂载并打开该磁盘镜像。拖动文件到应用程序文件夹 在弹出的磁盘窗口中,将 Blender.app
文件拖动到 "Applications"(应用程序)文件夹中。首次运行的安全提示 根据 macOS 的安全性和隐私设置,您在首次打开 Blender 时可能会收到系统提示,要求您确认是否允许打开该应用程序。只需按照提示选择“允许”即可。
如果您希望 Blender 的安装和配置完全自包含(例如无需修改系统配置),您可以设置一个便携式安装:在将 Blender.app
放入 "Applications" 文件夹后,可以在 Blender 的资源文件夹中自定义存储路径,以便其依赖文件不会散落在系统中。
在 macOS 上更新 Blender
macOS 用户有多种方法可以更新 Blender。以下是最常用的方法之一。1)使用 DMG 文件更新 Blender;2)下载更新版本 当 Blender 发布新版本时,您可以直接从官方网站下载最新的 dmg 文件。
三、认识 Blender 的启动画面
1. 新建文件
Blender 的启动界面提供多种新建项目模板,适合不同类型的创作需求:
- 常规:适合大多数 3D 模型制作和渲染场景的默认设置。
- 二维动画:专为 2D 动画设计的工作环境,集成了 Grease Pencil 工具。
- 雕刻:为雕刻艺术家量身打造的模板,提供优化的界面布局和工具。
- VFX:专注于视觉特效的工作环境,可快速进入特效合成任务。
- 视频编辑:为视频剪辑和后期制作准备的界面。
每种模板预设了不同的工作区布局,帮助用户快速进入特定类型的工作流程。
2. 打开文件
除了新建项目,启动界面还支持直接打开已有项目文件。点击“打开...”选项,您可以浏览本地文件,继续之前未完成的创作。
3. 恢复最近的一次会话
如果您上一次的工作因意外中断,Blender 允许您快速恢复之前的会话状态。这项功能极大地减少了因程序崩溃或意外关闭而导致的工作丢失。
~~~~~~
市面上的 R 语言培训班和书籍(包括网络上的文章或视频),由于受限于培训时间或书籍篇幅,往往难以深入探讨 R 语言在数据科学或人工智能中的具体应用场景,内容泛泛而谈,最终无法真正解决实际工作中的问题。同时,它们也缺乏针对医药领域的深度结合与讨论。为了解决这些痛点,我们推出了《用 R 探索医药数据科学》专栏。该专栏将持续更新,不仅为您提供系统化的学习内容,更致力于成为您掌握最新、最全医药数据科学技术的得力助手。
- 每篇文章篇幅在5000字 至9000字之间。
- 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。
《用 R 探索医药数据科学》专栏目录(截止11月份23日)
第一章:认识数据科学和R
1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客
1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:在R中应用SQL语言(更新20241217)-CSDN博客
2章10节:R的网络爬虫技术快速入门(更新20241217)-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:R基础绘图之Cleveland 点图,马赛克图和等高图(更新20250102)_散点矩阵图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:ggplot2绘图之原理逻辑分解,掌握绘图步骤(更新20241104)-CSDN博客
8章3节:ggplot2绘图之内置主题设置全解析(更新20241104)-CSDN博客
8章4节:ggplot2绘图之几何体解析(一),参考线和基准线与分布图和频数图(更新20241104)-CSDN博客
8章5节:ggplot2绘图之几何体解析(二),关系图和时间序列图与误差条和高级图形平滑曲线(更新20241104)-CSDN博客
8章6节:坐标轴须图和带状图(更新20241107)_维恩图 约翰·维恩-CSDN博客
8章7节:深度解析如何绘制多样的小提琴图(更新20241231)-CSDN博客
8章9节:深度讲解词云图的绘制和改变相关的主题(更新20250106)_echarts 可以生成词云图吗-CSDN博客
8章10节:维恩图和UpSet图_ae做柱状图动态图-CSDN博客
8章11节:R的地理图绘制(更新20241104)-CSDN博客
8章12节:三维图,由三维散点图起步,引入回归模型平面,到复杂坐标和渐变色的三维曲面图(更新20241107)-CSDN博客
8章13节:网络图(知识图谱)绘制的深度解析(更新20241109)-CSDN博客
8章15节:让 ggplot2 绘图进行顶级科研杂志的配色(更新20241118)
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
10章2节:Meta分析的7大步骤的扼要解读-CSDN博客
10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
第十一章:主成分分析
11章2节:深度讲解用R进行主成分分析(中)-CSDN博客
11章3节:深度讲解用R进行主成分分析(下)-CSDN博客
第十二章:常见类型回归分析
12章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客
12章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客
12章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客
12章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客
12章10节:条件Logistic回归模型的分析-CSDN博客
第十三章:生存分析模型
13章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客
13章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客
第十四章:匹配技术应用
14章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客
第十五章:判别和聚类分析
15章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客
15章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客
15章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客
第十六章:机器学习入门
16章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客
16章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客
16章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客
16章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客
16章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客
16章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客
16章8节:朴素贝叶斯分类预测模型,从构建、解析到实战-CSDN博客
16章9节:认识决策树,构建CART算法的决策树模型-CSDN博客
16章10节:深度解析如何构建随机森林算法预测模型-CSDN博客
16章11节:构建人工神经网络反向传播算法预测模型-CSDN博客
16章12节:认识机器学习的模型评估,掌握数值型数据的模型评估方法-CSDN博客
16章14节:评估和对比预测模型的ROC曲线和AUC值-CSDN博客
16章15节:六大ROC曲线扩展包的对比,和其它评估曲线的绘制-CSDN博客
第十七章:文献计量学
17章2节:文献计量学的国外数据库的数据采集,WOS数据库和PUBMED数据库的文献信息批量下载和分析
17章10节:为构建网络图从文献数据中提取特定信息-CSDN博客
17章12节:耦合网络可视化,从常规网络图到耦合分析聚类图的深度讲解-CSDN博客
17章13节:共被引网络、历史共被引网络和共词网络的可视化-CSDN博客
17章14节:概念结构图,贡献度最高文献因子图和最被引用文献因子图-CSDN博客
17章15节:文献计量学的语义地图和主题演化分析图-CSDN博客
17章16节:PubMed数据库的数据提取和可视化-CSDN博客
第十八章:时间序列分析
18章1节:认识时间序列分析,创建和整理时间序列数据-CSDN博客
18章3节:认识ARIMA模型和模拟其数据,讲解平稳性检验-CSDN博客
18章4节:ACF和PACF的可视化,和识别最佳模型-CSDN博客
18章5节:如何应用SARIMA模型来进行时间序列数据的预测-CSDN博客
18章6节:Facebook 的时间序列预测的 Prophet 模型-CSDN博客
第十九章:NHANES数据库
19章1节:认识二次数据分析和NHANES数据库-CSDN博客
19章2节:下载NHANES数据并使用R进行读取-CSDN博客
19章3节:NHANES数据的下载读取、追加和合并-CSDN博客
19章4节:NHANES的抽样权重、方差估计和估计值评估-CSDN博客
19章5节:处理NHANES数据的options和svydesign函数-CSDN博客
19章5节:处理NHANES数据的options和svydesign函数-CSDN博客
19章6节:复现NHANES的美国成人抑郁症患病率研究(上)-CSDN博客
19章7节:复现NHANES的美国成人抑郁症患病率研究(中)-CSDN博客
19章8节:复现NHANES的美国成人抑郁症患病率研究(下)-CSDN博客
19章9节:一步一步构建高效读取NHANES数据的自定义函数-CSDN博客
19章10节:如何解决 NHANES 数据合并所遇原表差异问题-CSDN博客
第二十章:gglot2扩张包
20章1节:模型系数图、相关矩阵图、双变量成对矩阵图-CSDN博客
20章4节:绘制高级散点矩阵图和多样生存曲线图-CSDN博客
20章5节:绘制分面直方图,多元时间序列图和二元密度图-CSDN博客
20章6节:绘制切尔诺夫面图(疼痛评分的笑脸可视化)和时间序列数据的日历热图-CSDN博客
20章7节:绘制时间序列地平线图和时间序列流图-CSDN博客