R的向量命名与names()函数

下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文5220字)。

4章8节:用R做数据重塑,行列命名和数据类型转换_r语言x列命名规则-CSDN博客

 在R语言中,行列命名和数据类型转换是数据处理中的两个基础性操作。它们不仅对数据的可读性和组织性至关重要,而且在执行数据分析、模型构建和结果解释时也扮演着重要的角色。

一、行和列命名

在数据科学和统计分析中,命名是组织和管理数据的一个重要部分。尤其是在处理复杂的多维数据集时,为行和列命名有助于清晰地标识数据,并使得后续的分析过程更加直观和便捷。在R语言中,names()函数用于为向量或其他对象分配名称,而对于矩阵这类二维数据结构,则需分别使用rownames()colnames()函数为其行和列进行命名。本文将详细探讨如何在R中对行和列进行命名,并讨论一些实际应用场景。

1、向量命名与names()函数

在R中,names()函数可以用于为向量的元素赋予名称。命名的长度必须与向量的长度相等,这样每个元素都有一个唯一的标识符。这对于后续数据的访问和管理非常有用。

x <- c(1, 2, 3)
names(x) <- c("ISH", "IDH", "SDH")
x

结果可见:

ISH IDH SDH 
  1   2   3 

在上面的例子中,我们为向量x的三个元素分别命名为"ISH"、"IDH"和"SDH"。这使得我们在访问这些元素时可以通过名称进行访问,而不仅仅依赖于位置索引。

​​

 市面上的 R 语言培训班和书籍(包括网络上的文章或视频),由于受限于培训时间或书籍篇幅,往往难以深入探讨 R 语言在数据科学或人工智能中的具体应用场景,内容泛泛而谈,最终无法真正解决实际工作中的问题。同时,它们也缺乏针对医药领域的深度结合与讨论。为了解决这些痛点,我们推出了《用 R 探索医药数据科学》专栏。该专栏将持续更新,不仅为您提供系统化的学习内容,更致力于成为您掌握最新、最全医药数据科学技术的得力助手。

  •  每篇文章篇幅在5000字 至9000字之间。
  • 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。

《用 R 探索医药数据科学》专栏的学习指南

重新整理《用 R 探索医药数据科学》专栏目录形成学习的目的是为读者梳理出一个清晰、系统的知识脉络。通过将内容划分为工具使用、常规技术、可视化等八大板块,能让读者快速定位到所需知识领域,直观把握不同章节间的逻辑关系与递进层次。这有助于初学者构建完整的知识体系,有步骤地开启学习之旅;也方便进阶者迅速检索特定技术内容,进行深入研究与实践,提升了专栏内容的可读性与实用性。

第一篇:介绍和工具的使用

专栏问答

专栏问答:学R语言,感觉还行,一用就错误,人工智能帮忙写代码也看不懂错误,怎么办?-CSDN博客

专栏问答:管理和选择不同的R,如何做好R的笔记,使用 openxlsx 包(更新20240822)_rstudio不同的r-CSDN博客

专栏问答:R 语言扩展包安装出问题?解决方案详细来教你(更新20250128)-CSDN博客

专栏问答:到底什么是综述,如何写好综述,如何进行文献搜索?(更新20250217)-CSDN博客

专栏问答:如何更精确地进行文献搜索(更新20250217)-CSDN博客

专栏问答:公共数据库发表能发表国际学术期刊吗?能够成为本硕博的毕业论文主要研究吗?以NHANES数据库为例-CSDN博客

1篇1章:认识数据科学和R

1篇1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客

1篇1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客

1篇1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客

1篇1章4节:医药数据科学入门之认识数据可视化(更新20240814)-CSDN博客

1篇1章5节:学会数据分析基础和流程,开始人工智能数据分析师之路(更新20250214)-CSDN博客

1篇2章:R的安装和数据读取

1篇2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客

1篇2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客

1篇2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客

1篇2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力_如何通过rstudio实现项目管理,防止依赖项冲突-CSDN博客

1篇2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客

1篇2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客

1篇2章7节:用R读写RDS、RData、CSV和TXT格式文件(更新20250129)_r语言读取rds文件-CSDN博客

1篇2章8节:用R读写Excel、SPSS、SAS、Stata和Minitab等产生的数据文件(更新20250129)

1篇2章9节:在R中应用SQL语言(更新20241217)_r语言与数据库-CSDN博客

1篇2章10节:R的网络爬虫技术快速入门(更新20241217)_如何用r分析inhanes数据库-CSDN博客

1篇3章:文档和课件输出

1篇3章1节:用R写作,先认识 NoteBook 和 Markdown-CSDN博客

1篇3章2节:如何在 R Markdown 和 R Notebook 中创建使用-CSDN博客

1篇3章3节:R Markdown的创建详解和直接使用学术期刊和出版社的模板_学术期刊 markdown模板-CSDN博客

1篇3章4节:R Markdown 的文档开头(YAML),从基础到扩展包-CSDN博客​

1篇3章5节: Markdown 的标题、列表、字词和链接-CSDN博客

1篇3章6节:R Markdown 的代码块、绘图与数学公式解析-CSDN博客

1篇3章7节:Knit 的文档生成,和多文档流程的集合应用-CSDN博客

1篇3章8节:HTML Widgets,将 JavaScript 可视化库封装成 R 函数-CSDN博客

1篇3章9节:使用 R Markdown 和 Shiny 结合R语言进行数据报告和交互式应用的创建-CSDN博客

第二篇:常规的分析技术

2篇1章:认识数据

2篇1章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客

2篇1章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客

2篇1章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客

2篇1章4节:R的逻辑运算和矩阵运算-CSDN博客

2篇1章5节:R 语言的循环与遍历函数全解析-CSDN博客

2篇2章:数据的预处理

2篇2章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客

2篇2章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客

2篇2章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客

2篇2章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客

2篇2章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客

2篇2章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客

2篇2章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客

2篇2章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客

2篇2章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客

2篇2章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客

2篇2章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客

2篇2章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客

2篇2章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客

2篇2章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客

2篇2章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客

2篇2章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客

2篇3章:定量数据的统计描述

2篇3章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客

2篇3章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客

2篇3章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客

2篇3章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客

2篇3章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客

2篇3章6节:R语言中的t检验,独立样本的t检验-CSDN博客

2篇3章7节:单样本t检验和配对t检验-CSDN博客

2篇3章8节:方差分析(ANOVA)及其应用-CSDN博客

2篇3章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客

2篇4章:定性数据的统计描述 

2篇4章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客

2篇4章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客

2篇4章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客

2篇4章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客

2篇4章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客

2篇4章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客

2篇5章:常见类型回归分析

2篇5章1节:认识回归分析的历史背景及应用-CSDN博客

2篇5章2节:构建一元和多元的线性回归模型-CSDN博客

2篇5章3节:回归模型中哑变量的应用和设置-CSDN博客

2篇5章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客

2篇5章5节:深度剖析回归模型结果的相关函数-CSDN博客

2篇5章6节:深度解读线性回归模型的绘图判断-CSDN博客

2篇5章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客

2篇5章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客

2篇5章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客

2篇5章10节:条件Logistic回归模型的分析-CSDN博客

2篇6章:生存分析模型

2篇6章1节:生存分析的基本概念和主要内容-CSDN博客

2篇6章2节:用R进行生存率的描述与估计-CSDN博客

2篇6章3节:生存分析的假设检验及可视化展示-CSDN博客

2篇6章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客

2篇6章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客

第三篇:数据可视化技术

3篇1章:R的传统绘图

3篇1章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客

3篇1章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客

3篇1章3节:R基础绘图之条形图和堆积条形图-CSDN博客

3篇1章4节:饼图,箱线图和克利夫兰点图-CSDN博客

3篇1章5节:R基础绘图之Cleveland 点图,马赛克图和等高图(更新20250102)_散点矩阵图-CSDN博客

3篇1章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客

 

3篇2章:R的进阶绘图

3篇2章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客

3篇2章2节:ggplot2绘图之原理逻辑分解,掌握绘图步骤(更新20241104)-CSDN博客

3篇2章3节:ggplot2绘图之内置主题设置全解析(更新20241104)-CSDN博客

3篇2章4节:ggplot2绘图之几何体解析(一),参考线和基准线与分布图和频数图(更新20241104)-CSDN博客

3篇2章5节:ggplot2绘图之几何体解析(二),关系图和时间序列图与误差条和高级图形平滑曲线(更新20241104)-CSDN博客

3篇2章6节:ggplot2绘图之统计变换与位置调整(更新20250111)-CSDN博客

3篇2章7节:个性化配色的自定义颜色演示_r语言自定义颜色怎么使用-CSDN博客

3篇2章8节:让 ggplot2 绘图进行顶级科研杂志的配色(更新20241118)_ggsci使用-CSDN博客

3篇2章9节:坐标轴须图和带状图(更新20241107)-CSDN博客

3篇2章10节:多样的小提琴图(更新20241231)_r语言parallelplot绘制平行坐标图-CSDN博客

3篇2章11节:维恩图和UpSet图-CSDN博客

3篇2章12节:雷达图和RadViz图-CSDN博客

3篇2章13节:网络图(知识图谱)绘制的深度解析(更新20241109)_认知网络分析图怎么看-CSDN博客

3篇2章14节:高质量动态图和交互式动态图_r语言数据分析动图-CSDN博客

3篇2章15节:深度讲解词云图的绘制和改变相关的主题(更新20250106)_d3 词云图-CSDN博客

3篇2章16节:R的地理图绘制(更新20241104)-CSDN博客

3篇2章17节:轻便科研绘图的tidyplots扩展包_科研绘图包-CSDN博客

3篇3章:基于gglot2的扩展包应用

3篇3章1节:模型系数图、相关矩阵图、双变量成对矩阵图-CSDN博客

3篇3章2节:绘制网络对象图和叠加地图网络图-CSDN博客

3篇3章3节:绘制平行坐标图和模型诊断图-CSDN博客

3篇3章4节:绘制高级散点矩阵图和多样生存曲线图-CSDN博客

3篇3章5节:绘制分面直方图,多元时间序列图和二元密度图-CSDN博客

3篇3章6节:绘制切尔诺夫面图(疼痛评分的笑脸可视化)和时间序列数据的日历热图-CSDN博客

3篇3章7节:绘制时间序列地平线图和时间序列流图-CSDN博客

3篇3章8节:绘制瀑布图和镶嵌图-CSDN博客

3篇3章9节:深度讲解树图的多样化绘制-CSDN博客

3篇3章10节:绘制混合箱线图和弧形条形图-CSDN博客

3篇3章11节:绘制议会图和深度讲解绘制山峦图(岭线图)-CSDN博客

3篇3章12节:多元统计分析的可视化扩展包,从主成分分析到时间序列,从K-means聚类到广义线性模型-CSDN博客

3篇4章:三维图形可视化

3篇4章1节:不同方法绘制多样的三维散点图-CSDN博客

3篇4章2节:深度讲解如何绘制三维透视图,从内置函数到扩展包函数-CSDN博客

3篇4章3节:绘制三维条带图和三维直方图-CSDN博客

3篇4章4节:绘制三维切片图和三维切片轮廓图,文末添加三维文本信息-CSDN博客

3篇4章5节:如何绘制三维曲面图、三维球面图和三维曲面地形图-CSDN博客

3篇4章6节:绘制三维等值面图、三维等值体素图和三维多边形图-CSDN博客

3篇4章7节:绘制交互式三维图形-CSDN博客

3篇4章8节:绘制三维地形图-CSDN博客

3篇4章9节:如何将 ggplot2 对象转化为三维图形-CSDN博客

第四篇:临床试验特定技术

4篇1章:临床试验的统计 

4篇1章1节:初步认识临床试验(约7500字)-CSDN博客

4篇1章2节:样本量估计的初步介绍-CSDN博客

4篇1章3节:用R进行样本量估计的统计学参数-CSDN博客

4篇1章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客

4篇1章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客

4篇1章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客

4篇1章7节:与总体均数比较的样本量估计和可视化-CSDN博客

4篇1章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客

4篇1章9节:试验的随机分组认识,用R做简单随机化-CSDN博客

4篇1章10节:用R实现分层随机化-CSDN博客

4篇1章11节:用R实现区组随机化和置换区组随机化-CSDN博客

4篇1章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客

第五篇:文献挖掘的技术

5篇1章:Meta分析攻略

5篇1章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客

​​5篇1章2节:Meta分析的7大步骤的扼要解读-CSDN博客

5篇1章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客

5篇1章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客

5篇1章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客

5篇1章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客

5篇1章7节:用R进行单个率Meta分析-CSDN博客

5篇1章8节:用R进行网状Meta分析细解-CSDN博客

5篇2章:文献计量学 

5篇2章1节:文献计量分析基础-CSDN博客

5篇2章2节:文献计量学的国外数据库的数据采集,WOS数据库和PUBMED数据库的文献信息批量下载和分析_pubmed能导出文献计量数据吗-CSDN博客

5篇2章3节:国际六大科研文献数据库的数据加载与格式转换解析_r使用最新版的 bibliometrix 绘制 countries' scientific prod-CSDN博客

5篇2章4节:文献计量学中数据合并、去重、切片与编辑_文献计量分析中文和英文数据库搜索的数据怎么合并-CSDN博客

5篇2章5节:文献计量学的描述性分析_文献计量学分析-CSDN博客

5篇2章6节:文献计量学的可视化与引文信息分析_文献计量与可视化分析-CSDN博客

5篇2章7节:作者主导性分析及H指数与其变体的应用-CSDN博客

5篇2章8节:Lotka分析和知识单元时序分析_lotka 定律-CSDN博客

5篇2章9节:局部被引次数分析与文献文本字段术语提取研究_local citation如何统计-CSDN博客

5篇2章10节:为构建网络图从文献数据中提取特定信息-CSDN博客

5篇2章11节:文献计量分析合作情况可视化-CSDN博客

5篇2章12节:耦合网络可视化,从常规网络图到耦合分析聚类图的深度讲解-CSDN博客

5篇2章13节:共被引网络、历史共被引网络和共词网络的可视化-CSDN博客

​​5篇2章14节:概念结构图,贡献度最高文献因子图和最被引用文献因子图-CSDN博客

5篇2章15节:文献计量学的语义地图和主题演化分析图-CSDN博客

5篇2章:PubMed数据库的数据提取和可视化-CSDN博客

5篇2章17节:文献计量中著作层面的情感分析-CSDN博客

第六篇:数据驱动的分析

6篇1章:主成分分析

6篇1章1节:深度讲解用R进行主成分分析(上)-CSDN博客

6篇1章2节:​深度讲解用R进行主成分分析(中)-CSDN博客

6篇1章3节:​深度讲解用R进行主成分分析(下)-CSDN博客

6篇1章4节:学会用R进行因子分析(上)-CSDN博客  

6篇1章5节:学会用R进行因子分析(中)-CSDN博客

6篇1章6节:学会用R进行因子分析(下)-CSDN博客

6篇2章:匹配技术应用

6篇2章1节:认识临床研究的匹配技术-CSDN博客

6篇2章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客

6篇3章:判别和聚类分析

6篇3章1节:医学研究中的判别分析和聚类分析-CSDN博客

6篇3章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客

6篇3章3节:二次判别分析技术的运用-CSDN博客

6篇3章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客

6篇3章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客

6篇3章6节:凝聚层次聚类和分裂层次聚类-CSDN博客

 6篇4章:时间序列分析

 6篇4章1节:认识时间序列分析,创建和整理时间序列数据-CSDN博客

 6篇4章2节:深度讲解白噪音检验-CSDN博客

 6篇4章3节:认识ARIMA模型和模拟其数据,讲解平稳性检验-CSDN博客

 6篇4章4节:ACF和PACF的可视化,和识别最佳模型-CSDN博客

 6篇4章5节:如何应用SARIMA模型来进行时间序列数据的预测-CSDN博客

 6篇4章6节:Facebook 的时间序列预测的 Prophet 模型-CSDN博客

第七篇:机器学习和预测

7篇1章:机器学习入门 

7篇1章1节:机器学习和人工智能的基础知识-CSDN博客

7篇1章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客

7篇1章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客

7篇1章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客

7篇1章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客

7篇1章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客

7篇1章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客

7篇1章8节:朴素贝叶斯分类预测模型,从构建、解析到实战-CSDN博客

7篇1章9节:认识决策树,构建CART算法的决策树模型-CSDN博客

7篇1章10节:深度解析如何构建随机森林算法预测模型-CSDN博客

7篇1章11节:构建人工神经网络反向传播算法预测模型-CSDN博客

7篇1章12节:认识机器学习的模型评估,掌握数值型数据的模型评估方法-CSDN博客

7篇1章13节:分类模型的混淆矩阵评估-CSDN博客

7篇1章14节:评估和对比预测模型的ROC曲线和AUC值-CSDN博客

7篇1章15节:六大ROC曲线扩展包的对比,和其它评估曲线的绘制-CSDN博客

 

7篇2章:抽样与重抽样技术

7篇2章1节:机器学习的抽样与重抽样技术-CSDN博客

7篇2章2节:模型抽样,调查抽样和抽样技术的专业术语-CSDN博客

7篇2章3节:总群体的统计量和抽样方法在医药研究中的应用-CSDN博客

7篇2章4节:概率抽样和三种非概率抽样的实现-CSDN博客

7篇2章5节:抽样分布的统计理论-CSDN博客

7篇2章6节:深度解析和认识中心极限定理-CSDN博客

7篇2章7节:简单随机抽样及其在R语言中的实现与验证-CSDN博客

7篇2章8节:系统性随机抽样及其在R语言中的实现与验证-CSDN博客

7篇2章9节:分层随机抽样及其在R语言中的实现与验证-CSDN博客

7篇2章10节:聚类抽样及其在R语言中的实现与验证-CSDN博客

7篇2章11节:自助抽样及其在R语言中的实现与验证-CSDN博客

7篇2章12节:抽样的蒙特卡洛方法-CSDN博客

第八篇:公共数据库挖掘技术

8篇1章:NHANES数据库

8篇1章1节:认识二次数据分析和NHANES数据库-CSDN博客

8篇1章2节:下载NHANES数据并使用R进行读取-CSDN博客

8篇1章3节:NHANES数据的下载读取、追加和合并-CSDN博客

8篇1章4节:NHANES的抽样权重、方差估计和估计值评估-CSDN博客

8篇1章5节:处理NHANES数据的options和svydesign函数-CSDN博客

8篇1章5节:处理NHANES数据的options和svydesign函数-CSDN博客

8篇1章6节:复现NHANES的美国成人抑郁症患病率研究(上)-CSDN博客

8篇1章7节:复现NHANES的美国成人抑郁症患病率研究(中)-CSDN博客

8篇1章8节:复现NHANES的美国成人抑郁症患病率研究(下)-CSDN博客

8篇1章9节:一步一步构建高效读取NHANES数据的自定义函数-CSDN博客

8篇1章10节:如何解决 NHANES 数据合并所遇原表差异问题-CSDN博客

8篇1章11节:2025年后如何使用扩展包访问、下载和分析 NHANES 数据-CSDN博客

8篇1章12节:如何直接显示NHANES某个变量的代码本-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DAT|R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值