下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文5422字)。
5章6节:R中进行独立样本的t检验_r 独立样本t检验-CSDN博客
t检验(T test),亦称Student's t检验,是统计学中常用的一种假设检验方法,广泛应用于定量资料的两组均数比较。t检验主要用于判断两组样本均值是否存在显著差异,是研究人员在实际应用中最常用的统计检验方法之一。根据具体数据和假设条件,t检验可以分为独立样本t检验、配对样本t检验以及单样本t检验等。
一、认识t检验
二、独立样本t检验
三、R语言中的实现独立样本t检验
1、独立样本t检验的准备
还是采用birthwt
数据集,该数据集来自于MASS包,记录了不同种族母亲的新生儿出生体重等信息。为了探讨不同种族母亲的新生儿出生体重是否存在显著差异,我们选取了白人母亲和黑人母亲两个种族的样本组,进行独立样本t检验。
(相关内容已经省略,请看文章《R语言中的实现独立样本t检验的准备》)
2、独立样本t检验的实施
正态性检验
# Shapiro-Wilk正态性检验
shapiro.test(white_birthwt)
shapiro.test(black_birthwt)
结果为:
> shapiro.test(white_birthwt)
Shapiro-Wilk normality test
data: white_birthwt
W = 0.98727, p-value = 0.4861
> shapiro.test(black_birthwt)
Shapiro-Wilk normality test
data: black_birthwt
W = 0.97696, p-value = 0.8038
Shapiro-Wilk正态性检验的结果显示,白人母亲新生儿出生体重数据(
white_birthwt
)的p值为0.4861,而黑人母亲新生儿出生体重数据(black_birthwt
)的p值为0.8038。这两个p值均大于0.05,表明在显著性水平0.05下,我们无法拒绝零假设,即这两组数据都符合正态分布。因此,可以认为这两组新生儿出生体重数据都满足正态性假设,适合进一步进行独立样本t检验。
Shapiro-Wilk正态性检验是一种统计方法,用于检验给定样本数据是否来自正态分布。正态分布是许多统计方法(如t检验和ANOVA)的基本假设之一,因此验证数据是否符合正态分布对于这些方法的正确应用至关重要。Shapiro-Wilk检验师通过计算一个统计量 WW 来衡量数据分布与正态分布的差异。这个统计量 WW 是根据样本的排序数据与理论正态分布的排序数据之间的相关性计算的。检验的零假设(H₀)是“样本数据来自正态分布”。
方差齐性检验
# Bartlett方差齐性检验
bartlett.test(list(white_birthwt, black_birthwt))
结果为:
Bartlett test of homogeneity of variances
data: list(white_birthwt, black_birthwt)
Bartlett's K-squared = 0.63339, df = 1, p-value = 0.4261
Bartlett方差齐性检验的结果显示,p值为0.4261,这个p值大于0.05,表明在显著性水平0.05下,我们无法拒绝零假设,即白人母亲和黑人母亲新生儿出生体重数据的方差是相等的。因此,可以认为这两组数据满足方差齐性的假设,适合进行基于等方差假设的独立样本t检验。
独立样本t检验
最后,进行独立样本t检验。
根据方差齐性检验的结果,设置var.equal
参数。如果方差齐性假设成立,则设为TRUE
;否则,设为FALSE
。
如果要进行单侧检验,请设置alternative
参数。
# 双侧t检验
t_test_result <- t.test(white_birthwt, black_birthwt, var.equal = TRUE)
print(t_test_result)
结果为:
Two Sample t-test
data: white_birthwt and black_birthwt
t = 2.4393, df = 120, p-value = 0.01618
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
72.13796 693.91493
sample estimates:
mean of x mean of y
3102.719 2719.692
该独立样本t检验结果显示,白人母亲和黑人母亲的新生儿出生体重的均值存在显著差异。t值为2.4393,自由度为120,p值为0.01618,小于0.05,因此我们拒绝零假设,认为两组均值不相等。95%置信区间为72.14到693.91,意味着白人母亲组新生儿的平均体重比黑人母亲组的新生儿高出72.14到693.91克。白人母亲组和黑人母亲组的新生儿体重均值分别为3102.72克和2719.69克。
# 单侧t检验(右尾)
t_test_result_greater <- t.test(white_birthwt, black_birthwt, var.equal = TRUE, alternative = "greater")
print(t_test_result_greater)
Two Sample t-test
data: white_birthwt and black_birthwt
t = 2.4393, df = 120, p-value = 0.008088
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
122.7423 Inf
sample estimates:
mean of x mean of y
3102.719 2719.692
结果显示,白人母亲组新生儿的平均体重为3102.719克,而黑人母亲组的新生儿平均体重为2719.692克。t检验得出的t值为2.4393,自由度为120,对应的p值为0.008088。由于p值小于0.05,我们拒绝原假设,接受备择假设,即白人母亲组新生儿的体重平均值显著大于黑人母亲组。置信区间(95%)为122.7423到正无穷,进一步支持了这一结论。
在这个例子中,选择使用单侧还是双侧t检验取决于研究假设的具体方向:
单侧检验:如果研究者有明确的假设或期望,即白人母亲组的新生儿体重平均值大于黑人母亲组,则使用单侧检验(如代码中的alternative = "greater"
)。单侧检验只检测均值差异的一个方向,更有力地检验特定方向的假设。
双侧检验:如果研究者没有预先设定两组均值的差异方向,而仅仅想知道是否存在任何显著差异,无论哪一组的均值更高,则应使用双侧检验。双侧检验考虑了均值差异的两个方向,适用于不确定哪一组均值更大的情况。
因此,如果您只关心白人母亲组新生儿体重是否比黑人母亲组大,使用单侧检验更合适;如果您不确定差异的方向或想检测任何差异,使用双侧检验更合适。
为了方便大家学习,将独立样本t检验的所有步骤和解释整合到一个完整的代码块中。
# 加载必要的R包
library(MASS)
# 数据准备与预处理
# 将race变量转换为fa.race,并将其因子化
birthwt$fa.race <- factor(c("white", "black", "other")[birthwt$race])
# 提取白人母亲和黑人母亲的新生儿出生体重数据
white_birthwt <- birthwt$bwt[birthwt$fa.race == "white"]
black_birthwt <- birthwt$bwt[birthwt$fa.race == "black"]
# 正态性检验
# 对每组数据进行Shapiro-Wilk正态性检验
shapiro_test_white <- shapiro.test(white_birthwt)
shapiro_test_black <- shapiro.test(black_birthwt)
# 打印正态性检验结果
print(shapiro_test_white)
print(shapiro_test_black)
# 方差齐性检验
# 进行Bartlett方差齐性检验
bartlett_test <- bartlett.test(list(white_birthwt, black_birthwt))
# 打印方差齐性检验结果
print(bartlett_test)
# 独立样本t检验
# 双侧t检验
t_test_result <- t.test(white_birthwt, black_birthwt, var.equal = TRUE)
# 打印双侧t检验结果
print(t_test_result)
# 单侧t检验(假设白人母亲组新生儿体重均值大于黑人母亲组)
t_test_result_greater <- t.test(white_birthwt, black_birthwt, var.equal = TRUE, alternative = "greater")
# 打印单侧t检验结果
print(t_test_result_greater)
市面上的 R 语言培训班和书籍(包括网络上的文章或视频),由于受限于培训时间或书籍篇幅,往往难以深入探讨 R 语言在数据科学或人工智能中的具体应用场景,内容泛泛而谈和千篇一律,最终无法真正解决实际工作中的问题。同时,它们也缺乏针对医药领域的深度结合与讨论。为了解决这些痛点,我们推出了《用 R 探索医药数据科学》专栏。该专栏将持续更新,不仅为您提供系统化的学习内容,更致力于成为您掌握最新、最全医药数据科学技术的得力助手。
- 每篇文章篇幅在5000字 至9000字之间。
- 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。
《用 R 探索医药数据科学》专栏的学习路径
重新整理《用 R 探索医药数据科学》专栏目录形成学习的目的是为读者梳理出一个清晰、系统的知识脉络。通过将内容划分为工具使用、常规技术、可视化、机器学习和人工智能等九大板块,能让读者快速定位到所需知识领域,直观把握不同章节间的逻辑关系与递进层次。这有助于初学者构建完整的知识体系,有步骤地开启学习之旅;也方便进阶者迅速检索特定技术内容,进行深入研究与实践,提升了专栏内容的可读性与实用性。
第一篇:介绍和工具的使用
专栏问答
专栏问答:学R语言,感觉还行,一用就错误,人工智能帮忙写代码也看不懂错误,怎么办?-CSDN博客
专栏问答:管理和选择不同的R,如何做好R的笔记,使用 openxlsx 包(更新20240822)_rstudio不同的r-CSDN博客
专栏问答:R 语言扩展包安装出问题?解决方案详细来教你(更新20250128)-CSDN博客
专栏问答:到底什么是综述,如何写好综述,如何进行文献搜索?(更新20250217)-CSDN博客
专栏问答:如何更精确地进行文献搜索(更新20250217)-CSDN博客
专栏问答:公共数据库发表能发表国际学术期刊吗?能够成为本硕博的毕业论文主要研究吗?以NHANES数据库为例-CSDN博客
1篇1章:认识数据科学和R
1篇1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客
1篇1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客
1篇1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1篇1章4节:医药数据科学入门之认识数据可视化(更新20240814)-CSDN博客
1篇1章5节:学会数据分析基础和流程,开始人工智能数据分析师之路(更新20250214)-CSDN博客
1篇2章:R的安装和数据读取
1篇2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客
1篇2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
1篇2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客
1篇2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力_如何通过rstudio实现项目管理,防止依赖项冲突-CSDN博客
1篇2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客
1篇2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客
1篇2章7节:用R读写RDS、RData、CSV和TXT格式文件(更新20250129)_r语言读取rds文件-CSDN博客
1篇2章8节:用R读写Excel、SPSS、SAS、Stata和Minitab等产生的数据文件(更新20250129)
1篇2章9节:在R中应用SQL语言(更新20241217)_r语言与数据库-CSDN博客
1篇2章10节:R的网络爬虫技术快速入门(更新20241217)_如何用r分析inhanes数据库-CSDN博客
1篇3章:文档和课件输出
1篇3章1节:用R写作,先认识 NoteBook 和 Markdown-CSDN博客
1篇3章2节:如何在 R Markdown 和 R Notebook 中创建使用-CSDN博客
1篇3章3节:R Markdown的创建详解和直接使用学术期刊和出版社的模板_学术期刊 markdown模板-CSDN博客
1篇3章4节:R Markdown 的文档开头(YAML),从基础到扩展包-CSDN博客
1篇3章5节: Markdown 的标题、列表、字词和链接-CSDN博客
1篇3章6节:R Markdown 的代码块、绘图与数学公式解析-CSDN博客
1篇3章7节:Knit 的文档生成,和多文档流程的集合应用-CSDN博客
1篇3章8节:HTML Widgets,将 JavaScript 可视化库封装成 R 函数-CSDN博客
1篇3章9节:使用 R Markdown 和 Shiny 结合R语言进行数据报告和交互式应用的创建-CSDN博客
第二篇:常规的分析技术
2篇1章:认识数据
2篇1章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
2篇1章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
2篇1章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
2篇2章:数据的预处理
2篇2章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
2篇2章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
2篇2章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
2篇2章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
2篇2章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
2篇2章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
2篇2章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
2篇2章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
2篇2章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
2篇2章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
2篇2章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
2篇2章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
2篇2章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
2篇2章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
2篇2章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
2篇2章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
2篇3章:定量数据的统计描述
2篇3章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
2篇3章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
2篇3章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
2篇3章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
2篇3章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
2篇3章6节:R语言中的t检验,独立样本的t检验-CSDN博客
2篇3章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
2篇4章:定性数据的统计描述
2篇4章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
2篇4章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
2篇4章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
2篇4章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
2篇4章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
2篇4章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
2篇5章:常见类型回归分析
2篇5章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客
2篇5章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客
2篇5章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客
2篇5章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客
2篇5章10节:条件Logistic回归模型的分析-CSDN博客
2篇6章:生存分析模型
2篇6章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客
2篇6章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客
第三篇:数据可视化技术
3篇1章:R的传统绘图
3篇1章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
3篇1章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
3篇1章5节:R基础绘图之Cleveland 点图,马赛克图和等高图(更新20250102)_散点矩阵图-CSDN博客
3篇1章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
3篇2章:R的进阶绘图
3篇2章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
3篇2章2节:ggplot2绘图之原理逻辑分解,掌握绘图步骤(更新20241104)-CSDN博客
3篇2章3节:ggplot2绘图之内置主题设置全解析(更新20241104)-CSDN博客
3篇2章4节:ggplot2绘图之几何体解析(一),参考线和基准线与分布图和频数图(更新20241104)-CSDN博客
3篇2章5节:ggplot2绘图之几何体解析(二),关系图和时间序列图与误差条和高级图形平滑曲线(更新20241104)-CSDN博客
3篇2章6节:ggplot2绘图之统计变换与位置调整(更新20250111)-CSDN博客
3篇2章7节:个性化配色的自定义颜色演示_r语言自定义颜色怎么使用-CSDN博客
3篇2章8节:让 ggplot2 绘图进行顶级科研杂志的配色(更新20241118)_ggsci使用-CSDN博客
3篇2章9节:坐标轴须图和带状图(更新20241107)-CSDN博客
3篇2章10节:多样的小提琴图(更新20241231)_r语言parallelplot绘制平行坐标图-CSDN博客
3篇2章13节:网络图(知识图谱)绘制的深度解析(更新20241109)_认知网络分析图怎么看-CSDN博客
3篇2章14节:高质量动态图和交互式动态图_r语言数据分析动图-CSDN博客
3篇2章15节:深度讲解词云图的绘制和改变相关的主题(更新20250106)_d3 词云图-CSDN博客
3篇2章16节:R的地理图绘制(更新20241104)-CSDN博客
3篇2章17节:轻便科研绘图的tidyplots扩展包_科研绘图包-CSDN博客
3篇3章:基于gglot2的扩展包应用
3篇3章1节:模型系数图、相关矩阵图、双变量成对矩阵图-CSDN博客
3篇3章4节:绘制高级散点矩阵图和多样生存曲线图-CSDN博客
3篇3章5节:绘制分面直方图,多元时间序列图和二元密度图-CSDN博客
3篇3章6节:绘制切尔诺夫面图(疼痛评分的笑脸可视化)和时间序列数据的日历热图-CSDN博客
3篇3章7节:绘制时间序列地平线图和时间序列流图-CSDN博客
3篇3章11节:绘制议会图和深度讲解绘制山峦图(岭线图)-CSDN博客
3篇3章12节:多元统计分析的可视化扩展包,从主成分分析到时间序列,从K-means聚类到广义线性模型-CSDN博客
3篇4章:三维图形可视化
3篇4章2节:深度讲解如何绘制三维透视图,从内置函数到扩展包函数-CSDN博客
3篇4章4节:绘制三维切片图和三维切片轮廓图,文末添加三维文本信息-CSDN博客
3篇4章5节:如何绘制三维曲面图、三维球面图和三维曲面地形图-CSDN博客
3篇4章6节:绘制三维等值面图、三维等值体素图和三维多边形图-CSDN博客
3篇4章9节:如何将 ggplot2 对象转化为三维图形-CSDN博客
第四篇:临床试验特定技术
4篇1章:临床试验的统计
4篇1章1节:初步认识临床试验(约7500字)-CSDN博客
4篇1章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
4篇1章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
4篇1章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
4篇1章7节:与总体均数比较的样本量估计和可视化-CSDN博客
4篇1章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
4篇1章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
4篇1章11节:用R实现区组随机化和置换区组随机化-CSDN博客
4篇1章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第五篇:文献挖掘的技术
5篇1章:Meta分析攻略
5篇1章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
5篇1章2节:Meta分析的7大步骤的扼要解读-CSDN博客
5篇1章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
5篇1章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
5篇1章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
5篇1章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
5篇2章:文献计量学
5篇2章2节:文献计量学的国外数据库的数据采集,WOS数据库和PUBMED数据库的文献信息批量下载和分析_pubmed能导出文献计量数据吗-CSDN博客
5篇2章3节:国际六大科研文献数据库的数据加载与格式转换解析_r使用最新版的 bibliometrix 绘制 countries' scientific prod-CSDN博客
5篇2章4节:文献计量学中数据合并、去重、切片与编辑_文献计量分析中文和英文数据库搜索的数据怎么合并-CSDN博客
5篇2章5节:文献计量学的描述性分析_文献计量学分析-CSDN博客
5篇2章6节:文献计量学的可视化与引文信息分析_文献计量与可视化分析-CSDN博客
5篇2章7节:作者主导性分析及H指数与其变体的应用-CSDN博客
5篇2章8节:Lotka分析和知识单元时序分析_lotka 定律-CSDN博客
5篇2章9节:局部被引次数分析与文献文本字段术语提取研究_local citation如何统计-CSDN博客
5篇2章10节:为构建网络图从文献数据中提取特定信息-CSDN博客
5篇2章12节:耦合网络可视化,从常规网络图到耦合分析聚类图的深度讲解-CSDN博客
5篇2章13节:共被引网络、历史共被引网络和共词网络的可视化-CSDN博客
5篇2章14节:概念结构图,贡献度最高文献因子图和最被引用文献因子图-CSDN博客
5篇2章15节:文献计量学的语义地图和主题演化分析图-CSDN博客
5篇2章:PubMed数据库的数据提取和可视化-CSDN博客
第六篇:数据驱动的分析
6篇1章:主成分分析
6篇1章1节:深度讲解用R进行主成分分析(上)-CSDN博客
6篇1章2节:深度讲解用R进行主成分分析(中)-CSDN博客
6篇1章3节:深度讲解用R进行主成分分析(下)-CSDN博客
6篇2章:匹配技术应用
6篇2章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客
6篇3章:判别和聚类分析
6篇3章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客
6篇3章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客
6篇3章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客
6篇4章:时间序列分析
6篇4章1节:认识时间序列分析,创建和整理时间序列数据-CSDN博客
6篇4章3节:认识ARIMA模型和模拟其数据,讲解平稳性检验-CSDN博客
6篇4章4节:ACF和PACF的可视化,和识别最佳模型-CSDN博客
6篇4章5节:如何应用SARIMA模型来进行时间序列数据的预测-CSDN博客
6篇4章6节:Facebook 的时间序列预测的 Prophet 模型-CSDN博客
第七篇:机器学习和预测
7篇1章:机器学习入门
7篇1章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客
7篇1章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客
7篇1章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客
7篇1章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客
7篇1章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客
7篇1章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客
7篇1章8节:朴素贝叶斯分类预测模型,从构建、解析到实战-CSDN博客
7篇1章9节:认识决策树,构建CART算法的决策树模型-CSDN博客
7篇1章10节:深度解析如何构建随机森林算法预测模型-CSDN博客
7篇1章11节:构建人工神经网络反向传播算法预测模型-CSDN博客
7篇1章12节:认识机器学习的模型评估,掌握数值型数据的模型评估方法-CSDN博客
7篇1章14节:评估和对比预测模型的ROC曲线和AUC值-CSDN博客
7篇1章15节:六大ROC曲线扩展包的对比,和其它评估曲线的绘制-CSDN博客
7篇2章:抽样与重抽样技术
7篇2章2节:模型抽样,调查抽样和抽样技术的专业术语-CSDN博客
7篇2章3节:总群体的统计量和抽样方法在医药研究中的应用-CSDN博客
7篇2章7节:简单随机抽样及其在R语言中的实现与验证-CSDN博客
7篇2章8节:系统性随机抽样及其在R语言中的实现与验证-CSDN博客
7篇2章9节:分层随机抽样及其在R语言中的实现与验证-CSDN博客
7篇2章10节:聚类抽样及其在R语言中的实现与验证-CSDN博客
7篇2章11节:自助抽样及其在R语言中的实现与验证-CSDN博客
7篇3章:特征工程技术
7篇3章5节:特征工程变量子集选择的过滤器方法应用-CSDN博客
7篇3章6节:特征工程变量子集选择的包装器方法应用-CSDN博客
7篇3章7节:特征工程变量子集选择的嵌入式方法应用-CSDN博客
第八篇:公共数据库挖掘技术
8篇1章:NHANES数据库
8篇1章1节:认识二次数据分析和NHANES数据库-CSDN博客
8篇1章2节:下载NHANES数据并使用R进行读取-CSDN博客
8篇1章3节:NHANES数据的下载读取、追加和合并-CSDN博客
8篇1章4节:NHANES的抽样权重、方差估计和估计值评估-CSDN博客
8篇1章5节:处理NHANES数据的options和svydesign函数-CSDN博客
8篇1章5节:处理NHANES数据的options和svydesign函数-CSDN博客
8篇1章6节:复现NHANES的美国成人抑郁症患病率研究(上)-CSDN博客
8篇1章7节:复现NHANES的美国成人抑郁症患病率研究(中)-CSDN博客
8篇1章8节:复现NHANES的美国成人抑郁症患病率研究(下)-CSDN博客
8篇1章9节:一步一步构建高效读取NHANES数据的自定义函数-CSDN博客
8篇1章10节:如何解决 NHANES 数据合并所遇原表差异问题-CSDN博客
8篇1章11节:2025年后如何使用扩展包访问、下载和分析 NHANES 数据-CSDN博客
8篇1章12节:如何直接显示NHANES某个变量的代码本-CSDN博客
8篇2章:医药公共数据库
第九篇:R与人工智能
9篇1章:人工智能技术应用
9篇1章1节:在 RStudio 中使用 DeepSeek-CSDN博客