NeurIPS2023 大语言模型(LLM)方向优质论文汇总!

NeurIPS2023大会聚焦大语言模型(LLM),揭示了QLoRA、Direct Preference Optimization、DoReMi等12篇优质论文,涉及高效微调、强化学习、多模态生成、3D整合、隐私保护等领域,展现了LLM的最新发展趋势和研究成果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023最后一场AI行业大会NeurIPS已经结束了,这场盛会共接收了全球各地的3586篇优质论文,这些论文如今已全部在线上公开发表,展现出人工智能领域的最新研究成果。

大型语言模型(LLM)作为人工智能领域的重要分支,在NeurIPS 2023大会上,关于LLM的论文也有很多。今天特意从这些论文中整理出12篇大语言模型(LLM)优质论文分享给大家,看看LLM领域的最新研究成果和发展趋势!

1、QLoRA: Efficient Finetuning of Quantized LLMs

QLoRA:量化 LLM 的高效微调

简述:本文提出了一种用于LLMs的微调方法QLORA,可在单个48GB GPU上微调65B参数模型,同时保持高性能。QLORA的创新包括4位NormalFloat、双量化、分页优化器。研究人员微调了1000多个模型,结果表明,使用小型数据集的QLORA微调可获得最佳结果,即使使用较小的模型。

图片

2、Direct Preference Optimization: Your Language Model is Secretly a Reward Model

直接偏好优化:你的语言模型暗地里是一个奖励模型

简述:本文中提出了一种新的奖励模型参数化方法,简化了强化学习从人类反馈(RLHF)问题的标准解决方案,把这种算法称为直接偏好优化(DPO),它稳定、高效,计算需求低,简化了微调过程。与现有方法相比,DPO在满足人类偏好方面同样出色或更优,特别是DPO在控制文本情感方面表现优异,并且在文本摘要和对话生成中提供了质量相当或更高的响应,同时更易于实现和训练。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值