2025深度学习发论文&模型涨点之——YOLO-Mamba
YOLO + Mamba 是一种将 YOLO 系列目标检测算法与 Mamba 状态空间模型(State Space Model, SSM)相结合的方法,旨在提高目标检测的效率和准确性。
-
YOLO + Mamba 的结合在多个领域展示了显著的性能提升,特别是在处理低分辨率图像和开放词汇目标检测方面。
-
这些研究不仅提高了检测的准确性,还显著降低了计算复杂度,使其更适合实时应用。未来的研究可能会进一步探索 Mamba 在其他视觉任务中的应用潜力。
小编整理了一些YOLO-Mamba【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“111”即可全部领取
论文精选
论文1:
FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space
基于选择性状态空间的面部表情检测与分类的FER-YOLO-Mamba
方法
-
FER-YOLO-VSS双分支模块:提出了一种FER-YOLO-VSS双分支模块,将卷积层提取局部特征的能力与状态空间模型(SSMs)揭示长距离依赖的能力相结合。
-
注意力机制:设计了一个包含多层感知器(MLP)的注意力块(ABMLP),通过全局平均池化、MLP和逐元素乘法技术实现输入特征