拿下TPAMI25!深度聚类重磅突破!

2025深度学习发论文&模型涨点之——深度聚类

    • 聚类分析:是一种无监督学习方法,目的是将数据划分为若干个簇(或类别),使得同一簇内的数据相似度较高,而不同簇之间的数据相似度较低。常见的聚类算法有K-Means、层次聚类、DBSCAN等。

    • 深度学习:通过构建多层的神经网络结构,自动从数据中学习特征表示,能够处理复杂的非线性关系。例如卷积神经网络(CNN)在图像处理领域表现出色,循环神经网络(RNN)及其变体长短期记忆网络(LSTM)在处理序列数据方面有独特优势。

    小编整理了一些深度聚类【论文】合集,以下放出部分,全部论文PDF版皆可领取。

    需要的同学

    回复“ 深度聚类”即可全部领取

    论文精选

    论文1:

    Gene-SGAN: discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering

    通过多视角弱监督深度聚类发现具有影像和遗传特征的疾病亚型

    方法

      • 多视角弱监督深度聚类框架:Gene-SGAN结合了影像和遗传数据,通过深度生成对抗网络(GAN)和变分推断(VI)来识别疾病亚型。

        生成对抗网络(GAN):用于从健康对照组到患者组的多对一映射,捕捉疾病相关的脑部变化模式。

        变分推断(VI):通过解码神经网络将遗传特征与潜在变量关联起来,确保疾病亚型与遗传特征相关。

        图片

      创新点

            • 多视角建模:Gene-SGAN是首个将影像和遗传数据联合建模的多视角深度聚类方法,能够识别与遗传特征相关的疾病亚型。

              疾病亚型识别:通过联合考虑影像和遗传数据,Gene-SGAN能够识别出具有不同神经解剖模式和遗传决定因素的疾病亚型,显著提高了疾病亚型的生物学解释性和临床相关性。

              性能提升:在半合成实验中,Gene-SGAN在训练集和测试集上均表现出良好的聚类准确性,且在不同超参数设置下均能保持稳定性能。与六种现有方法相比,Gene-SGAN在所有情况下均表现出更高的聚类准确性。

              图片

            论文2:

            DivClust: Controlling Diversity in Deep Clustering

            DivClust:在深度聚类中控制多样性

            方法

                • 多样性控制损失函数:DivClust通过引入一个新颖的损失函数,控制深度聚类框架中多个聚类结果的多样性。

                  多投影头架构:使用单个特征提取器后接多个投影头,每个投影头生成一个聚类结果。

                  动态相似性阈值:通过动态调整相似性阈值,确保聚类结果的多样性符合用户定义的目标。

                  图片

                创新点

                      • 多样性控制:DivClust是首个能够显式控制深度聚类框架中聚类结果多样性的方法,能够根据用户定义的目标调整多样性。

                        性能提升:在多个数据集和深度聚类框架上,DivClust生成的聚类结果在多样性控制的同时,保持了高质量的聚类性能。

                        共识聚类改进:通过共识聚类,DivClust能够生成比单一聚类方法更鲁棒的聚类结果,显著提高了聚类的准确性和鲁棒性。

                        图片


                      论文3:

                      Multi-Class Cell Detection Using Spatial Context Representation

                      基于空间上下文表示的多类细胞检测

                      方法

                      • 空间统计函数(K-function):引入Ripley's K-function来描述细胞的空间上下文,捕捉细胞在多类和多尺度下的空间分布。

                        多任务学习框架:通过多任务学习框架,联合训练细胞检测、分类和空间上下文预测模块,学习包含空间上下文的细胞表示。

                        深度聚类模块:引入深度聚类模块,通过聚类学习伪标签,进一步融合细胞的外观特征和空间上下文特征。

                        图片

                      创新点

                            • 空间上下文建模:首次将空间上下文信息显式引入细胞检测和分类任务中,显著提高了分类性能。

                              性能提升:在三个不同的癌症数据集(乳腺癌、肺癌和结直肠癌)上,MCSpatNet在细胞检测和分类任务上均优于现有的最先进方法。

                              多任务学习:通过多任务学习框架,MCSpatNet能够同时学习细胞的外观特征和空间上下文特征,提高了模型的泛化能力和鲁棒性。

                              图片


                            论文4:

                            Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering

                            通过结构化正则化深度聚类实现无监督领域适应

                            方法

                              • 结构化正则化深度聚类(SRDC):提出了一种新的无监督领域适应方法,通过深度聚类直接揭示目标数据的内在判别结构。

                                KL散度最小化:通过最小化网络预测标签分布与辅助分布之间的KL散度,实现目标数据的判别聚类。

                                结构化源正则化:通过将辅助分布替换为源数据的真实标签分布,实现结构化源正则化。

                                图片

                              创新点

                                    • 直接揭示目标判别结构:SRDC直接通过目标数据的判别聚类揭示其内在判别结构,避免了传统领域适应方法中可能损害目标数据内在结构的风险。

                                      性能提升:在多个基准数据集上,SRDC在所有转移任务中均优于现有的最先进方法,特别是在源域和目标域差异较大的任务中,性能提升更为显著。

                                      结构化正则化:通过结构化源正则化,SRDC能够更好地利用源数据的结构信息,提高目标数据的判别能力。

                                      图片

                                    小编整理了深度聚类文代码合集

                                    需要的同学

                                    回复“深度聚类”即可全部领取

                                    评论
                                    添加红包

                                    请填写红包祝福语或标题

                                    红包个数最小为10个

                                    红包金额最低5元

                                    当前余额3.43前往充值 >
                                    需支付:10.00
                                    成就一亿技术人!
                                    领取后你会自动成为博主和红包主的粉丝 规则
                                    hope_wisdom
                                    发出的红包
                                    实付
                                    使用余额支付
                                    点击重新获取
                                    扫码支付
                                    钱包余额 0

                                    抵扣说明:

                                    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                                    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                                    余额充值