【YOLOv5】 01-3060显卡 GPU版本环境搭建与运行

YOLOv5环境搭建步骤

  1. 创建虚拟环境

使用anaconda新建一个python版本为3.7的虚拟环境

  1. 查看电脑支持的cuda版本

由于30系列的的显卡暂时不支持CUDA11以下版本。因此,这里得安装超过CUDA11.0的版本。

通过如下命令来查看可以安装的cuda的版本:

conda search cuda
  1. 安装指定版本的cuda

通过如下命令安装指定版本的cuda:

conda install cudatoolkit=11.3.1
  1. 安装cudnn

通过如下命令自动安装适配版本的cudnn

conda install cudnn
  1. 安装pytorch

pytorch官网查看cuda11.3对应的pytorch版本

复制上图所示的代码进行安装:

pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
  1. 检验是否安装成功
import torch
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())

YOLOv5运行步骤

  1. 下载YOLOv5代码

从如下网址下载代码:

https://github.com/ultralytics/yolov5/tree/v6.2

下载后解压:

  1. 打开YOLOv5代码

使用我们刚才创建的虚拟环境来打开“yolov5-6.2”的项目

  1. 安装一些包
pip install opencv-python==4.5.4.60 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyyaml
pip install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
pip install seaborn -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
pip install tensorboard
  1. 运行YOLOv5代码

在编辑器中运行detect.py文件

运行结果就保存在“run\detect\exp”路径下

可以看到检测后的图片如下:

如果想测试视频检测的效果,可以在“/data”路径下新建一个“video”文件夹用来存放待检测视频

然后在detect.py中做如下修改

运行代码可以看到对视频的每一帧进行识别

检测前后的视频如下所示:

下一篇:

【YOLOv5】 02-标注图片,训练并使用自己的模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhichao_97

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值