[YOLO专题-12]:YOLO V5 - ultralytics支持的5种不同规模的模型类型比较

本文详细介绍了YOLO V5的5种不同规模模型,包括small、middle、large和extra,探讨了它们在速度、内存需求和mAP性能上的差异,为适应不同应用场景提供了选择指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客

本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122294915


目录

1、概述

2、不同模型性能比较

3、典型规模的模型:

4、模型规模的配置



1、概述

为了适应不同的应用场景,YOLO V5并不是采用单一规模的模型,而是采用多种规模的模型。不同的规模的模型,其速度、所需要的内存空间,mAP不尽相同。

 

### 封装YOLOv5模型的方法 为了使YOLOv5模型能够更方便地部署或复用,可以将其封装成易于调用的形式。通常的做法是创建一个Python类来管理模型加载、预测等功能,并提供清晰简洁的应用程序接口(API)。 #### 创建模型封装类 下面是一个简单的例子展示如何实现这一点: ```python import torch from pathlib import Path class YOLOv5Wrapper: """ A wrapper class to encapsulate the functionality of a YOLOv5 model """ def __init__(self, weights_path: str, device: str = 'cuda'): """ Initialize the YOLOv5 wrapper with given parameters. :param weights_path: The path where your trained .pt file is located. :param device: Device on which you want to run inference ('cpu', 'cuda'). """ self.device = torch.device(device) self.model = torch.hub.load('ultralytics/yolov5', 'custom', path=Path(weights_path), force_reload=True).to(self.device) def predict(self, img_paths): """ Perform object detection using loaded YOLOv5 model. :param img_paths: List containing paths to images that need predictions. :return: Results from running prediction over provided images. """ results = [] for img_path in img_paths: result = self.model(img_path) results.append(result.pandas().xyxy[0]) return results ``` 此代码片段定义了一个名为`YOLOv5Wrapper`的类[^3],该类负责初始化YOLOv5实例并执行图像上的目标检测任务。通过这种方式,可以在其他项目中轻松导入此类来进行快速而有效的对象识别操作。 另外,如果计划将这个工具集成到Web服务或其他应用程序中,则可能还需要考虑API设计方面的问题——比如RESTful API的设计模式或是gRPC这样的高性能通信协议的选择等;同时也应该考虑到安全性因素如输入验证和错误处理机制等问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文火冰糖的硅基工坊

你的鼓励是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值