单细胞测序已在医学、动植物领域展现了重要应用价值。在医学领域,它能精准解析肿瘤细胞异质性,深入揭示癌症机制,为靶向治疗和个性化医疗提供依据,还推动了免疫相关疾病的研究与治疗。在动物研究中,该技术可追踪胚胎发育中的细胞分化轨迹,揭示复杂组织和器官的形成机制,并解析珍稀动物种群的遗传多样性,为保护策略提供支持。在植物领域,单细胞测序帮助研究植物细胞应对干旱、盐碱等环境胁迫的机制,追踪细胞分化路径,挖掘植物生长发育规律,为优良作物培育奠定基础。
单细胞转录组和Bulk转录组分析在研究细胞转录水平上有显著差异。如图所示,单细胞分析从单个细胞的起始材料中获取基因表达数据,能够解析每种类型或亚群细胞的独特表达模式,揭示成千上万个细胞间的异质性和精细的表达特征。而Bulk分析则从大量细胞的RNA起始材料中获取平均表达数据,展现整体的基因表达趋势,但由于不同细胞类型的表达差异被平均化,难以识别细胞间的异质性。因此,单细胞分析在探究细胞多样性和功能特异性方面具有显著优势,而Bulk分析更适用于宏观整体表达趋势的研究需求。
图1单细胞RNA-seq和bulk RNA-seq
目前,我们可提供三个单细胞平台进行单细胞RNA-seq,包括10xGenomics、寻因SeekOne® DD、华大DNBelab C-TaiM 4。这三个平台均采用液滴法,其流程涉及细胞悬液制备、液滴生成、细胞裂解与mRNA捕获、逆转录和扩增、文库构建和测序,以及后续的数据分析。油包水生成的示例图如下:
图2单细胞测序油包水生成示意图
拿到测序数据我们就可以进行后续分析了,接下来看一下我们分析的内容吧。
1.数据质控(以10x数据结果为例)。
单细胞测序完后,我们通常会拿到Web网页报告,主要关注以下指标:
· Estimated Number of Cells :捕获细胞数
· Median Genes per Cell:基因中位数
· Fraction Reads in Cells:带有细胞相关barcodes且唯一比对到转录组的reads(百分比较低意味着细胞中濒死或死亡细胞RNA比例较高),主要范围>70%。
· Median UMI per Cell:每个细胞相关barcodes的UMI计数中位值