VINS-Fusion初始化------IMU与Camera外参旋转标定,IMU角速度偏置标定,重力向量、单目尺度标定

本文深入探讨了VINS-Fusion中VIO系统的初始化过程,包括IMU-Camera外参旋转、IMU角速度偏置、重力方向及单目尺度的在线标定,并对比了单目与双目初始化的不同之处,特别介绍了单目初始化中构建SFM问题以优化位姿、3D点的方法。

本文基于VINS-Fusion解释VIO系统的初始化,包括在线标定IMU-Camera的外参旋转,IMU角速度偏置,重力方向,单目尺度。单目初始化相比于双目,多一个构建SFM问题优化位姿、3D点的过程。

详细标定内容参考知乎卢涛的文章,链接如下
初始化连接

在Open-VINS系统中,IMU初始化是视觉惯性里程计(VIO)系统中的关键步骤,其目的是在系统启动阶段估计初始状态数,包括重力方向、初始速度、初始位置以及IMU传感器的偏差(加速度计和陀螺仪偏差)。在静止状态下进行IMU初始化具有相对简单的实现条件,通常可以在1秒内完成[^1]。 ### 初始化的基本原理 当系统处于静止状态时,IMU的测量值主要由重力加速度和传感器噪声组成。由于系统没有运动,因此可以假设加速度计的测量值等于重力向量。通过多次采样加速度计的数据并进行平均处理,可以得到较为准确的重力方向估计[^2]。 具体来说,假设系统在初始时刻处于静止状态,加速度计的测量值可以表示为: $$ \mathbf{a}_b = R_{wb}^T \cdot \mathbf{g}^w + \mathbf{b}_a $$ 其中: - $\mathbf{a}_b$ 是IMU在机体坐标系下的加速度测量值; - $R_{wb}^T$ 是世界坐标系到机体坐标系的旋转矩阵; - $\mathbf{g}^w$ 是世界坐标系下的重力向量(通常设为 $[0, 0, -g]^T$); - $\mathbf{b}_a$ 是加速度计的偏差。 在静止状态下,可以通过多次测量加速度计的输出并计算其平均值来估计重力方向。假设IMU在静止状态下采集了 $N$ 次加速度数据,则重力方向估计为: $$ \bar{\mathbf{a}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}_i $$ 通过该估计值,可以进一步计算出初始旋转矩阵 $R_{wb}$,从而确定重力方向在世界坐标系中的表示[^2]。 ### 初始化的实现步骤 在Open-VINS中,IMU初始化的实现主要包括以下几个步骤: 1. **静止检测**:系统首先需要检测是否处于静止状态。通常通过分析IMU角速度和加速度变化来判断。如果角速度和加速度的变化量均小于设定的阈值,则认为系统处于静止状态。 2. **加速度计数据采集平均**:在确认系统处于静止状态后,采集多个加速度计数据样本,并计算其平均值以估计重力方向。 3. **旋转矩阵计算**:根据平均加速度值计算旋转矩阵 $R_{wb}$,将机体坐标系下的重力向量转换为世界坐标系下的表示。 4. **偏差估计**:陀螺仪的偏差可以通过静止状态下的角速度测量值进行估计。由于系统处于静止状态,理论上角速度应为零,因此陀螺仪的测量值可以直接用于估计偏差。 5. **初始化状态设置**:将估计重力方向、初始速度(通常设为零)、初始位置(通常设为零)以及IMU偏差设置为VIO系统的初始状态数。 ### 示例代码片段 以下是一个简化的代码示例,展示如何在Open-VINS中实现IMU的静止初始化过程: ```cpp // 假设已采集到N个加速度计数据 std::vector<Eigen::Vector3d> acc_measurements = get_imu_accelerometer_data(); // 计算平均加速度 Eigen::Vector3d avg_acc = Eigen::Vector3d::Zero(); for (const auto& acc : acc_measurements) { avg_acc += acc; } avg_acc /= acc_measurements.size(); // 根据平均加速度估计重力方向 Eigen::Vector3d gravity_vector = avg_acc.normalized(); // 计算旋转矩阵(将机体坐标系下的重力向量转换到世界坐标系) Eigen::Matrix3d R_wb = Eigen::Quaterniond::FromTwoVectors(gravity_vector, Eigen::Vector3d::UnitZ()).toRotationMatrix(); // 估计陀螺仪偏差 std::vector<Eigen::Vector3d> gyro_measurements = get_imu_gyroscope_data(); Eigen::Vector3d gyro_bias = Eigen::Vector3d::Zero(); for (const auto& gyro : gyro_measurements) { gyro_bias += gyro; } gyro_bias /= gyro_measurements.size(); // 设置初始状态数 State state; state.gravity = gravity_vector; state.velocity = Eigen::Vector3d::Zero(); state.position = Eigen::Vector3d::Zero(); state.gyro_bias = gyro_bias; state.accel_bias = Eigen::Vector3d::Zero(); // 假设加速度计偏差已校准 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JaydenQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值