真手把手带你跑r3live by 自己设备 (二)

本文介绍了如何标定海康工业相机的内参和外参,以配合avia运行r3live。首先使用livox_camera_lidar_calibration获取相机内参,然后通过两种方法标定相机-雷达的外参。文章还提到了可选的imu bias标定,并解释了标定结果的含义。完成这些步骤后,即可准备运行r3live。
摘要由CSDN通过智能技术生成

前言

前面详细讲了如何给电脑连接avia 和 海康工业相机,连接后想跑r3live呢,则需要标定好相机内参和avia 和相机之间的外参。

1.标定相机内参:

首先标定海康工业相机的内参,则可以用到livox_camera_lidar_calibration帮助我们得到相机内参 by cameraCalib.launch。官方写的很详细,直接跑就可以得到参数了。
https://github.com/Livox-SDK/livox_camera_lidar_calibration/blob/master/doc_resources/README_cn.md

2.标定相机外参(相机-雷达):

标定相机外参呢则有两种方法可以选择,分别是livox_camera_lidar_calibration 和livox_camera_calib,前者就是官方给的方法,后者是港科大的方法。
方法一:
按照官方一步一步来就可以了。

方法二:
我们主要是用这方法来实现的。
https://github.com/hku-mars/livox_camera_calib
用港科大的方法,录制一段包并且拍一个照片即可
结果:
在这里插入图片描述

需要注意的是,我们要先得到相机内参才能标外参,否则外参的结果不会准确。在calib.yaml文件可以修改参数。在这里插入图片描述

3.标定imu的bias(可选)
标定imu,这个不是必须,除非你用的是外置imu,而我这里是用avia就不需要。
参考地址:https://blog.csdn.net/er_dan_love/article/details/124370788
项目在u盘中,产生的那些结果是不同的型号的。
IMU测得的数值是观测值,用这个观测值减去bias和walk,也就是噪声和随机游走就是一个真值
在用imu_tils标定之后,会产生如下结果:
Gyr: 角速度
unit: " rad/s"
avg-axis:
gyr_n: 2.6413984893745627e-03 高斯噪声
gyr_w: 2.5583724217772844e-05 bias
x-axis:
gyr_n: 3.3122488442647404e-03
gyr_w: 4.3588056137286859e-05
y-axis:
gyr_n: 2.3753043729997140e-03
gyr_w: 1.3374928882977363e-05
z-axis:
gyr_n: 2.2366422508592336e-03
gyr_w: 1.9788187633054314e-05
Acc: 加速度
unit: " m/s^2"
avg-axis:
acc_n: 1.9016740946159966e-03 高斯噪声
acc_w: 4.3866858332747729e-05 bias
x-axis:
acc_n: 2.0886766904137585e-03
acc_w: 6.5864779945185047e-05
y-axis:
acc_n: 1.9966581415159002e-03
acc_w: 3.1454913016282431e-05
z-axis:
acc_n: 1.6196874519183318e-03
acc_w: 3.4280882036775694e-05
但这个标定结果并不是我们最终的结果。现在得到的结果的单位是rad/s和m/s^2,而老师param.h代码中给出的单位如下面代码中最后两行,后面多了/sqrt(hz),这是因为噪声是个能量概念或者说功率概念,我们还要把标定得到的参数归一化到每单位sqrt(hz)尺度下。

在代码中这样体现:
在这里插入图片描述
这样子的,就是IMU测得的数值是观测值,用这个观测值减去bias和walk,也就是噪声和随机游走就是一个真值,而bias和随机游走是在不断变化的,但是数值很小,糙一点的系统就假设它们不变直接用初始值,而vins中这个值是要不断进行优化的。

有了内参外参后,就可以跑r3live 了。

先到这里了,后面 会继续介绍,未完待续。。。。。

R3LIVE是一种激光-惯性-视觉结合的SLAM算法,被认为是非常经典的文章\[1\]。该算法使用了IMU、相机和激光雷达三个传感器,每个传感器都有不同的作用。R3LIVE的代码流程可以概括为以下几个部分。 首先是前言部分,其中介绍了R3LIVE算法的结构和各个传感器的作用\[1\]。 接下来是节点与话题的绘图部分,通过绘制节点和话题的图形,可以清晰地看到R3LIVE中的两个节点:/r3live_LiDAR_front_end和/r3live_mapping\[2\]。 然后是主函数部分,该部分在FAST-LIO2中已经详细介绍过,所以在R3LIVE中不再过多介绍\[3\]。 最后是重点部分,即VIO部分。在这部分中,R3LIVE算法进行了详细的操作,但由于篇幅限制,无法在这里进行详细介绍。建议参考相关文献或代码来深入了解R3LIVE的VIO部分\[3\]。 总之,R3LIVE是一种激光-惯性-视觉结合的SLAM算法,其代码包括前言部分、节点与话题的绘图部分、主函数部分和VIO部分。详细的代码解析可以参考相关文献或代码资源。 #### 引用[.reference_title] - *1* *2* [R3LIVE代码详解(一)](https://blog.csdn.net/lovely_yoshino/article/details/126572997)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [R3LIVE代码详解(三)](https://blog.csdn.net/lovely_yoshino/article/details/126676059)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枫仙森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值