SCI二区TOP|麋鹿群优化算法: 一种新颖的受自然启发的元启发式算法


1.背景

2024年,SO Oladejo受到麋鹿群的繁殖过程启发,提出了麋鹿群优化算法(Elk herd optimizer, EHO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

EHO灵感来自麋鹿群的繁殖过程,主要分为发情季节和产犊季节

在这里插入图片描述
在这里插入图片描述

2.2算法过程

发情季节

在发情期,根据发情期公鹿率(Br)来划分家族。总家族数计算为B = |Br × EHS|。根据它们的适应度值从EH中选出公鹿,数目为B的最优适应度的鹿被认为是公鹿:
B = arg ⁡ min ⁡ j ∈ ( 1 , 2 , … , B ) f ( x j ) (1) \mathcal{B}=\arg\min_{j\in(1,2,\ldots,B)}f(x^j)\tag{1} B=argj(1,2,,B)minf(xj)(1)

在B集合中的公鹿随后会争斗以创建家族。为了将后宫分配给B中的每个公鹿,使用轮盘赌选择法,其中后宫根据其适应度值与总适应度值的比例分配给各自的公鹿:
p j = f ( x j ) ∑ k = 1 B f ( x k ) (2) p_j=\frac{f(x^j)}{\sum_{k=1}^Bf(x^k)}\tag{2} pj=k=1Bf(xk)f(xj)(2)

产犊季节

在产犊季节,每个家族的小鹿主要根据其父亲和母亲的属性繁殖。如果小鹿与家族种父亲具有相同指数:
x i j ( t + 1 ) = x i j ( t ) + α ⋅ ( x i k ( t ) − x i j ( t ) ) (3) x_{i}^{j}(t+1)=x_{i}^{j}(t)+\alpha\cdot(x_{i}^{k}(t)-x_{i}^{j}(t))\tag{3} xij(t+1)=xij(t)+α(xik(t)xij(t))(3)
其中, α是继承属性的比率,α 的较高值会增加随机元素参与新小牛的可能性,这反过来又增强了多样性。如果小鹿与家族母亲具有相同指数:
x i j ( t + 1 ) = x i j ( t ) + β ( x i h j ( t ) − x i j ( t ) ) + γ ( x i r ( t ) − x i j ( t ) ) (4) x_i^j(t+1)=x_i^j(t)+\beta(x_i^{h_j}(t)-x_i^j(t))+\gamma(x_i^r(t)-x_i^j(t))\tag{4} xij(t+1)=xij(t)+β(xihj(t)xij(t))+γ(xir(t)xij(t))(4)

选择季节

所有家族合并成一个矩阵EHtemp,EHtemp中的麋鹿将根据它们的适应度值按升序排序。

在这里插入图片描述
流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

论文结果展示
在这里插入图片描述

4.参考文献

[1] Al-Betar M A, Awadallah M A, Braik M S, et al. Elk herd optimizer: a novel nature-inspired metaheuristic algorithm[J]. Artificial Intelligence Review, 2024, 57(3): 48.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值