海市蜃楼算法FATA: 基于地球物理学的高效优化方法


1.背景

2024年,A Qi受到海市蜃楼形成过程启发,提出了海市蜃楼算法(Fata Morgana Algorithm, FATA)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

FATA模拟了海市蜃楼形成过程,其分别设计了海市蜃楼光过滤原理(MLF)和光传播策略(LPS)。MLF策略结合定积分原理,推动算法种群增强FATA的探索能力。LPS策略结合三角函数原理,推动算法个体提高算法的收敛速度和开发能力,这两种搜索策略可以更好地利用FATA的种群和个体搜索能力。

在这里插入图片描述
在这里插入图片描述

2.2算法过程

海市蜃楼滤光原理

在这里插入图片描述
FATA使用定积分原理进行种群搜索的策略。在模拟海市蜃楼形成的过程中,算法区分了两种光线:一种是普通光,不参与海市蜃楼的形成;另一种是能够形成海市蜃楼的特殊光线,称为海市蜃楼光x。FATA算法通过定积分原理评估这两种光的种群质量,进而选择优质的海市蜃楼光进行进一步的搜索和优化。该策略不仅区分了不同类型的光线种群,还通过计算积分面积作为适应度衡量,有效提升了算法在探索和利用方面的能力:
在这里插入图片描述
伪代码实现:
在这里插入图片描述
光的传播原理

在FATA算法中,光传播原理是继海市蜃楼光过滤原理之后实施的,主要用作算法的个体搜索策略,专注于搜索空间中的局部开发,以寻找局部最小值。该策略首先通过海市蜃楼光过滤策略,基于微积分原理评估和筛选光种群,选出有助于形成海市蜃楼现象的个体。经过筛选的光种群随后会经历折射和反射过程,这些过程中光线的方向和大小会发生变化,从而影响算法的搜索效果和效率。此外,算法还根据光传播原理与三角函数的结合,设计了个体搜索策略,通过不同阶段的反射和折射策略,进一步优化搜索结果,有效地在搜索空间中执行局部开发,寻找到最优解:

在这里插入图片描述
光的折射(第一阶段)
光x在第一阶段的折射过程中进入具有不均匀密度的介质,从光学密介质传播到光学稀薄介质,改变了光的方向和大小:
在这里插入图片描述

光的折射(第二阶段)
在完成第一阶段折射后,光在随机点进行第二阶段的折射:
在这里插入图片描述
光的全内反射
全内反射阶段是海市蜃楼现象形成中光传播的最后阶段,这是因为随着折射角的增加,光在具有不均匀密度的介质中发生全内反射。全内反射策略驱动FATA种群向相反方向探索:
在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Qi A, Zhao D, Heidari A A, et al. FATA: An Efficient Optimization Method Based on Geophysics[J]. Neurocomputing, 2024: 128289.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值