【算法应用】基于鲸鱼优化算法WOA求解VRPTW问题


1.鲸鱼优化算法WOA原理

SCI二区|鲸鱼优化算法(WOA)原理及实现

2.VRPTW数学模型

VRPTW问题基于VRP问题,每个客户点都有一个时间窗口,表示可以在某个时间范围内访问。目标是在满足时间窗口和车辆容量限制的情况下,最小化总行驶距离或成本。

目标函数定义为车辆使用数量与总距离之和:
min ⁡ 1000 ∑ k ∈ K ∑ j ∈ Δ + ( 0 ) x 0 j k + ∑ k ∈ K ∑ ( i , j ) ∈ A c i j x i j k + \min1000\sum_{k\in K}\sum_{j\in\Delta^{+}(0)}x_{0jk}+\sum_{k\in K}\sum_{(i,j)\in A}c_{ij}x_{ijk^{+}} min1000kKjΔ+(0)x0jk+kK(i,j)Acijxijk+

每个用户只能被一辆车访问:
∑ k ∈ K ∑ j ∈ Δ + ( i ) x i j k = 1 ∀ i ∈ N \sum_{k\in K}\sum_{j\in\Delta^{+}(i)}x_{ijk}=1\quad\forall i\in N kKjΔ+(i)xijk=1iN

流量限制:
∑ j ∈ Δ + ( 0 ) x 0 j k = 1 ∀ k ∈ K \sum_{j\in\Delta^{+}(0)}x_{0jk}=1\quad\forall k\in K jΔ+(0)x0jk=1kK
∑ i ∈ Δ − ( j ) x i j k − ∑ i ∈ Δ + ( j ) x i i k = 0 ∀ k ∈ K , ∀ j ∈ N \sum_{i\in\Delta^{-}(j)}x_{ijk}-\sum_{i\in\Delta^{+}(j)}x_{iik}=0\quad\forall k\in K,\forall j\in N iΔ(j)xijkiΔ+(j)xiik=0kK,jN
∑ i ∈ Δ − ( n + 1 ) x i , n + 1 , k = 1 ∀ k ∈ K \sum_{i\in\Delta^{-}(n+1)}x_{i,n+1,k}=1\quad\forall k\in K iΔ(n+1)xi,n+1,k=1kK

硬时间窗约束:
w i k + s i + t i j − w j k ≤ ( 1 − x i j k ) M i j , ∀ k ∈ K , ∀ ( i , j ) ∈ A w_{ik}+s_{i}+t_{ij}-w_{jk}\leq(1-x_{ijk})M_{ij},\forall k\in K,\forall(i,j)\in A wik+si+tijwjk(1xijk)Mij,kK,(i,j)A
a i ( ∑ j ∈ Δ + ( i ) x i j k ) ≤ w i k ≤ b i ( ∑ j ∈ Δ + ( i ) x i j k ) ∀ k ∈ K , ∀ i ∈ N a_{i}\left(\sum_{j\in\Delta^{+}(i)}x_{ijk}\right)\leq w_{ik}\leq b_{i}\left(\sum_{j\in\Delta^{+}(i)}x_{ijk}\right)\quad\forall k\in K,\forall i\in N ai jΔ+(i)xijk wikbi jΔ+(i)xijk kK,iN

E ≤ w i k ≤ L ∀ k ∈ K , ∀ i ∈ { 0 , n + 1 } E\leq w_{ik}\leq L\quad\forall k\in K,\forall i\in\{0,n+1\} EwikLkK,i{0,n+1}

载重约束:
∑ i ∈ N d i ∑ j ∈ Δ + ( i ) x i j k ≤ C ∀ k ∈ K \sum_{i\in N}d_{i}\sum_{j\in\Delta^{+}(i)}x_{ijk}\leq C\quad\forall k\in K iNdijΔ+(i)xijkCkK

3.结果展示


4.参考文献

[1] 李琳, 刘士新, 唐加福. 改进的蚁群算法求解带时间窗的车辆路径问题[J]. 控制与决策, 2010(09):102-106.

5.代码获取

6.读者交流

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值