1.鲸鱼优化算法WOA原理
2.VRPTW数学模型
VRPTW问题基于VRP问题,每个客户点都有一个时间窗口,表示可以在某个时间范围内访问。目标是在满足时间窗口和车辆容量限制的情况下,最小化总行驶距离或成本。
目标函数定义为车辆使用数量与总距离之和:
min
1000
∑
k
∈
K
∑
j
∈
Δ
+
(
0
)
x
0
j
k
+
∑
k
∈
K
∑
(
i
,
j
)
∈
A
c
i
j
x
i
j
k
+
\min1000\sum_{k\in K}\sum_{j\in\Delta^{+}(0)}x_{0jk}+\sum_{k\in K}\sum_{(i,j)\in A}c_{ij}x_{ijk^{+}}
min1000k∈K∑j∈Δ+(0)∑x0jk+k∈K∑(i,j)∈A∑cijxijk+
每个用户只能被一辆车访问:
∑
k
∈
K
∑
j
∈
Δ
+
(
i
)
x
i
j
k
=
1
∀
i
∈
N
\sum_{k\in K}\sum_{j\in\Delta^{+}(i)}x_{ijk}=1\quad\forall i\in N
k∈K∑j∈Δ+(i)∑xijk=1∀i∈N
流量限制:
∑
j
∈
Δ
+
(
0
)
x
0
j
k
=
1
∀
k
∈
K
\sum_{j\in\Delta^{+}(0)}x_{0jk}=1\quad\forall k\in K
j∈Δ+(0)∑x0jk=1∀k∈K
∑
i
∈
Δ
−
(
j
)
x
i
j
k
−
∑
i
∈
Δ
+
(
j
)
x
i
i
k
=
0
∀
k
∈
K
,
∀
j
∈
N
\sum_{i\in\Delta^{-}(j)}x_{ijk}-\sum_{i\in\Delta^{+}(j)}x_{iik}=0\quad\forall k\in K,\forall j\in N
i∈Δ−(j)∑xijk−i∈Δ+(j)∑xiik=0∀k∈K,∀j∈N
∑
i
∈
Δ
−
(
n
+
1
)
x
i
,
n
+
1
,
k
=
1
∀
k
∈
K
\sum_{i\in\Delta^{-}(n+1)}x_{i,n+1,k}=1\quad\forall k\in K
i∈Δ−(n+1)∑xi,n+1,k=1∀k∈K
硬时间窗约束:
w
i
k
+
s
i
+
t
i
j
−
w
j
k
≤
(
1
−
x
i
j
k
)
M
i
j
,
∀
k
∈
K
,
∀
(
i
,
j
)
∈
A
w_{ik}+s_{i}+t_{ij}-w_{jk}\leq(1-x_{ijk})M_{ij},\forall k\in K,\forall(i,j)\in A
wik+si+tij−wjk≤(1−xijk)Mij,∀k∈K,∀(i,j)∈A
a
i
(
∑
j
∈
Δ
+
(
i
)
x
i
j
k
)
≤
w
i
k
≤
b
i
(
∑
j
∈
Δ
+
(
i
)
x
i
j
k
)
∀
k
∈
K
,
∀
i
∈
N
a_{i}\left(\sum_{j\in\Delta^{+}(i)}x_{ijk}\right)\leq w_{ik}\leq b_{i}\left(\sum_{j\in\Delta^{+}(i)}x_{ijk}\right)\quad\forall k\in K,\forall i\in N
ai
j∈Δ+(i)∑xijk
≤wik≤bi
j∈Δ+(i)∑xijk
∀k∈K,∀i∈N
E ≤ w i k ≤ L ∀ k ∈ K , ∀ i ∈ { 0 , n + 1 } E\leq w_{ik}\leq L\quad\forall k\in K,\forall i\in\{0,n+1\} E≤wik≤L∀k∈K,∀i∈{0,n+1}
载重约束:
∑
i
∈
N
d
i
∑
j
∈
Δ
+
(
i
)
x
i
j
k
≤
C
∀
k
∈
K
\sum_{i\in N}d_{i}\sum_{j\in\Delta^{+}(i)}x_{ijk}\leq C\quad\forall k\in K
i∈N∑dij∈Δ+(i)∑xijk≤C∀k∈K
3.结果展示
4.参考文献
[1] 李琳, 刘士新, 唐加福. 改进的蚁群算法求解带时间窗的车辆路径问题[J]. 控制与决策, 2010(09):102-106.