间歇泉启发算法:一种用于实数约束工程优化问题算法


在这里插入图片描述

1.摘要

本文介绍了一种新的优化方法——间歇泉启发算法(GEA),其灵感源自自然界中的间歇泉地质现象。为了深入理解优化过程,本研究通过对这一现象进行数学建模分析。GEA在多个实数参数基准测试(如CEC 2005、CEC 2014和CEC 2017)上进行了效率和精度验证,并在实际工程优化问题中得到应用。

在这里插入图片描述

2.算法原理

间歇泉的形成涉及地下水的运动、温度和压力的变化,以及通往地表的路径选择,这些自然过程与优化算法中的种群运动、适应度评估和选择机制相似。GEA通过模拟地下水的动态来描述优化过程,以及通过种群的突变来模拟地下水路径的融合和移动。此外,算法使用轮盘赌选择法来优化解的选择,增强算法的性能并避免陷入局部最优解。

选择种群中一个成员作为通道的概率与该成员的适应度值成正比:
p i = f ( X i ) ∑ j = 1 N c f ( X j ) ∀ i ϵ { 1 , 2 , … , N c } p_i=\frac{f(X_i)}{\sum_{j=1}^{\mathrm{Nc}}f(X_j)}\forall i\epsilon\{1,2,\dots,\mathrm{Nc}\} pi=j=1Ncf(Xj)f(Xi)iϵ{1,2,,Nc}
采用轮盘赌机制来选择通道,其中每个通道的选择概率基于其适应度函数值。定义邻居标准为距离相似性标准:
d ( X m , Y l ) = ∑ j = 1 D x m , j y l , j [ ∑ j = 1 D x m , j 2 ∑ j = 1 D y l , j 2 ] 1 2 d(X_m,Y_l)=\frac{\sum_{j=1}^\mathrm{D}x_{m,j}y_{l,j}}{\left[\sum_{j=1}^\mathrm{D}x_{m,j}^2\sum_{j=1}^\mathrm{D}y_{l,j}^2\right]^{\frac12}} d(Xm,Yl)=[j=1Dxm,j2j=1Dyl,j2]21j=1Dxm,jyl,j
GEA模拟自然界的间歇泉现象,有效地指导个体向优化方向移动,位置更新为:
X i n e w , 1 = X n , i + r a n d × ( X c , i − X i ) + r a n d × ( X c , i − X n , i ) X_{i}^{new,1}=X_{n,i}+rand\times\left(X_{c,i}-X_{i}\right)+rand\times(X_{c,i}-X_{n,i}) Xinew,1=Xn,i+rand×(Xc,iXi)+rand×(Xc,iXn,i)
压力对地球喷发有重大影响,表述为:
P i = Iter Iter − 1 ( f ( X i ) − f m i n f m a x − f m i n ) 2 h e r − ( f ( X i ) − f m i n f m a x − f m i n ) h e r + 1 h e r P_i=\sqrt{\frac{\text{Iter}}{\text{Iter}-1}}\sqrt{\left(\frac{\text{f}(\text{X}_i)-\text{f}_{\mathrm{min}}}{\text{f}_{\mathrm{max}}-\text{f}_{\mathrm{min}}}\right)^{\frac{2}{\mathrm{her}}}-\left(\frac{\text{f}(\text{X}_i)-\text{f}_{\mathrm{min}}}{\text{f}_{\mathrm{max}}-\text{f}_{\mathrm{min}}}\right)^{\frac{\mathrm{her}+1}{\mathrm{her}}}} Pi=Iter1Iter (fmaxfminf(Xi)fmin)her2(fmaxfminf(Xi)fmin)herher+1
其中,第 i 个个体的压力引导它向特定的通道移动,这个通道是从候选通道位置中通过轮盘赌选择法确定的:
p i n e w = 1 − p i p_i^{new}=1-p_i pinew=1pi
因此,个体位置更新为:
X i n e w , 2 = X c , i n e w + r a n d × ( P i − r a n d ) × u n i f r a n d ( X m a x − X m i n ) X_{i}^{new,2}=X_{c,i}^{new}+rand\times(P_{i}-rand)\times unifrand(X_{max}-X_{min}) Xinew,2=Xc,inew+rand×(Pirand)×unifrand(XmaxXmin)

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Ghasemi M, Zare M, Zahedi A, et al. Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization[J]. Journal of Bionic Engineering, 2024, 21(1): 374-408.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值