1.摘要
本文介绍了一种新的优化方法——间歇泉启发算法(GEA),其灵感源自自然界中的间歇泉地质现象。为了深入理解优化过程,本研究通过对这一现象进行数学建模分析。GEA在多个实数参数基准测试(如CEC 2005、CEC 2014和CEC 2017)上进行了效率和精度验证,并在实际工程优化问题中得到应用。
2.算法原理
间歇泉的形成涉及地下水的运动、温度和压力的变化,以及通往地表的路径选择,这些自然过程与优化算法中的种群运动、适应度评估和选择机制相似。GEA通过模拟地下水的动态来描述优化过程,以及通过种群的突变来模拟地下水路径的融合和移动。此外,算法使用轮盘赌选择法来优化解的选择,增强算法的性能并避免陷入局部最优解。
选择种群中一个成员作为通道的概率与该成员的适应度值成正比:
p
i
=
f
(
X
i
)
∑
j
=
1
N
c
f
(
X
j
)
∀
i
ϵ
{
1
,
2
,
…
,
N
c
}
p_i=\frac{f(X_i)}{\sum_{j=1}^{\mathrm{Nc}}f(X_j)}\forall i\epsilon\{1,2,\dots,\mathrm{Nc}\}
pi=∑j=1Ncf(Xj)f(Xi)∀iϵ{1,2,…,Nc}
采用轮盘赌机制来选择通道,其中每个通道的选择概率基于其适应度函数值。定义邻居标准为距离相似性标准:
d
(
X
m
,
Y
l
)
=
∑
j
=
1
D
x
m
,
j
y
l
,
j
[
∑
j
=
1
D
x
m
,
j
2
∑
j
=
1
D
y
l
,
j
2
]
1
2
d(X_m,Y_l)=\frac{\sum_{j=1}^\mathrm{D}x_{m,j}y_{l,j}}{\left[\sum_{j=1}^\mathrm{D}x_{m,j}^2\sum_{j=1}^\mathrm{D}y_{l,j}^2\right]^{\frac12}}
d(Xm,Yl)=[∑j=1Dxm,j2∑j=1Dyl,j2]21∑j=1Dxm,jyl,j
GEA模拟自然界的间歇泉现象,有效地指导个体向优化方向移动,位置更新为:
X
i
n
e
w
,
1
=
X
n
,
i
+
r
a
n
d
×
(
X
c
,
i
−
X
i
)
+
r
a
n
d
×
(
X
c
,
i
−
X
n
,
i
)
X_{i}^{new,1}=X_{n,i}+rand\times\left(X_{c,i}-X_{i}\right)+rand\times(X_{c,i}-X_{n,i})
Xinew,1=Xn,i+rand×(Xc,i−Xi)+rand×(Xc,i−Xn,i)
压力对地球喷发有重大影响,表述为:
P
i
=
Iter
Iter
−
1
(
f
(
X
i
)
−
f
m
i
n
f
m
a
x
−
f
m
i
n
)
2
h
e
r
−
(
f
(
X
i
)
−
f
m
i
n
f
m
a
x
−
f
m
i
n
)
h
e
r
+
1
h
e
r
P_i=\sqrt{\frac{\text{Iter}}{\text{Iter}-1}}\sqrt{\left(\frac{\text{f}(\text{X}_i)-\text{f}_{\mathrm{min}}}{\text{f}_{\mathrm{max}}-\text{f}_{\mathrm{min}}}\right)^{\frac{2}{\mathrm{her}}}-\left(\frac{\text{f}(\text{X}_i)-\text{f}_{\mathrm{min}}}{\text{f}_{\mathrm{max}}-\text{f}_{\mathrm{min}}}\right)^{\frac{\mathrm{her}+1}{\mathrm{her}}}}
Pi=Iter−1Iter(fmax−fminf(Xi)−fmin)her2−(fmax−fminf(Xi)−fmin)herher+1
其中,第 i 个个体的压力引导它向特定的通道移动,这个通道是从候选通道位置中通过轮盘赌选择法确定的:
p
i
n
e
w
=
1
−
p
i
p_i^{new}=1-p_i
pinew=1−pi
因此,个体位置更新为:
X
i
n
e
w
,
2
=
X
c
,
i
n
e
w
+
r
a
n
d
×
(
P
i
−
r
a
n
d
)
×
u
n
i
f
r
a
n
d
(
X
m
a
x
−
X
m
i
n
)
X_{i}^{new,2}=X_{c,i}^{new}+rand\times(P_{i}-rand)\times unifrand(X_{max}-X_{min})
Xinew,2=Xc,inew+rand×(Pi−rand)×unifrand(Xmax−Xmin)
伪代码
3.结果展示
4.参考文献
[1] Ghasemi M, Zare M, Zahedi A, et al. Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization[J]. Journal of Bionic Engineering, 2024, 21(1): 374-408.