2024年FGCS SCI2区TOP:多样性迁移策略量子粒子群算法DM-QPSO,深度解析+性能实测


1.摘要

粒子群算法因其简单高效,已成功应用于实际优化问题。然而,传统粒子群优化算法在复杂的高维优化问题中表现不佳,容易陷入局部最优。为了解决这一问题,本文提出了一种基于多样性迁移的量子粒子群算法(DM-QPSO),其引入了一种新的迁移机制,能够在种群中捕捉不同范围的粒子,并根据适应度值和种群位置共同决定迁移个体的选择。通过比较粒子的适应度值和平均汉明距离,偏离种群中心范围的粒子将被替换,从而优化种群的迭代方向。

2.QPSO算法

QPSO是一种基于量子行为和群体智能的优化算法,该算法描述了粒子在量子空间中具有量子束缚态的聚集,并融合了量子行为的概念。在QPSO中,粒子的状态可以用波函数 ψ ( X , t ) \psi\left(X,t\right) ψ(X,t)表示,概率密度函数 ∣ ψ ( X , t ) 2 ∣ \left|\psi(X,t)^{2}\right| ψ(X,t)2 用于确定粒子在任意时刻 t t t出现位置 X X X的概率,利用蒙特卡洛随机模拟来建模粒子的运动状态,可以得到粒子在势阱中的位置:
X = p ± L 2 ln ⁡ 1 u X=p\pm\frac{L}{2}\ln\frac{1}{u} X=p±2Llnu1
当粒子在多维目标寻找空间中运动时,相关变量的更新方程为:
p i , j ( t ) = φ P i , j ( t ) + ( 1 − φ ) G j ( t ) , 1 ≤ i ≤ M , 1 ≤ j ≤ D p_{i,j}(t)=\varphi P_{i,j}(t)+(1-\varphi)G_{j}(t),1\leq i\leq M,1\leq j\leq D pi,j(t)=φPi,j(t)+(1φ)Gj(t),1iM,1jD
φ = c 1 r 1 / ( c 1 r 1 + c 2 r 2 ) \varphi=c_1r_1/(c_1r_1+c_2r_2) φ=c1r1/(c1r1+c2r2)
L i , j ( t ) = 2 β ∣ C j ( t ) − X i , j ( t ) ∣ L_{i,j}(t)=2\beta \begin{vmatrix} C_j(t)-X_{i,j}(t) \end{vmatrix} Li,j(t)=2β Cj(t)Xi,j(t)
C j ( t ) = 1 M ∑ i = 1 M P i , j ( t ) C_{j}(t)=\frac{1}{M}\sum_{i=1}^{M}P_{i,j}(t) Cj(t)=M1i=1MPi,j(t)
β \beta β为膨胀收缩因子,通常取一个固定值或从1线性减小到0.5。 C j ( t ) C_j(t) Cj(t)表示粒子群的平均最佳位置, p i , j ( t ) p_{i,j}(t) pi,j(t)表示粒子的吸引子,由粒子的 p b e s t p_{best} pbest g b e s t g_{best} gbest决定。
变换后的粒子位置方程为:
X i , j ( t + 1 ) = p i , j ( t ) ± β ∣ C j ( t ) − X i , j ( t ) ∣ ln ⁡ 1 / u X_{i,j}(t+1)=p_{i,j}(t)\pm\beta\left|C_{j}(t)-X_{i,j}(t)\right|\ln1/u Xi,j(t+1)=pi,j(t)±βCj(t)Xi,j(t)ln1/u

3.DM-QPSO算法

多样性迁移策略

DM-QPSO不仅结合了传统的迁移策略,还增加了一个新的度量标准,用于确定粒子的进化方向。计算种群的代表性量,并选择种群中具有最小平均汉明距离(HD)的个体作为迁移对象。通过计算种群中每个粒子的平均汉明距离,选择具有最小平均汉明距离的粒子作为迁移对象。粒子的平均汉明距离为:
m e a n _ H = 1 M ( M − 1 ) / 2 ∑ i = 1 M ∑ i = j + 1 M H ( P i , P j ) mean\_H=\frac{1}{M\left(M-1\right)/2}\sum_{i=1}^{M}\sum_{i=j+1}^{M}H\left(P_{i},P_{j}\right) mean_H=M(M1)/21i=1Mi=j+1MH(Pi,Pj)

根据种群表示,可以选择具有最小平均汉明距离(HD)值的粒子,并将其添加到迁移目标列表中。为了确定需要迁移的粒子,存在两种情况:
(a) 当种群中没有两个或更多粒子具有相同的平均汉明距离时,选择具有最小平均汉明距离的粒子作为迁移候选粒子。
(b) 当种群中有两个或更多粒子具有相同的平均汉明距离时,将比较粒子群体之间的适应度值,并选择适应度最差的粒子作为迁移对象。为了移除最差的粒子并增加种群的多样性,使用适应度最小的粒子替代已确定的迁移对象。

伪代码

流程图

4.结果展示



5.参考文献

[1] Gong C, Zhou N, Xia S, et al. Quantum particle swarm optimization algorithm based on diversity migration strategy[J]. Future Generation Computer Systems, 2024, 157: 445-458.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值