1.摘要
粒子群算法因其简单高效,已成功应用于实际优化问题。然而,传统粒子群优化算法在复杂的高维优化问题中表现不佳,容易陷入局部最优。为了解决这一问题,本文提出了一种基于多样性迁移的量子粒子群算法(DM-QPSO),其引入了一种新的迁移机制,能够在种群中捕捉不同范围的粒子,并根据适应度值和种群位置共同决定迁移个体的选择。通过比较粒子的适应度值和平均汉明距离,偏离种群中心范围的粒子将被替换,从而优化种群的迭代方向。
2.QPSO算法
QPSO是一种基于量子行为和群体智能的优化算法,该算法描述了粒子在量子空间中具有量子束缚态的聚集,并融合了量子行为的概念。在QPSO中,粒子的状态可以用波函数
ψ
(
X
,
t
)
\psi\left(X,t\right)
ψ(X,t)表示,概率密度函数
∣
ψ
(
X
,
t
)
2
∣
\left|\psi(X,t)^{2}\right|
ψ(X,t)2
用于确定粒子在任意时刻
t
t
t出现位置
X
X
X的概率,利用蒙特卡洛随机模拟来建模粒子的运动状态,可以得到粒子在势阱中的位置:
X
=
p
±
L
2
ln
1
u
X=p\pm\frac{L}{2}\ln\frac{1}{u}
X=p±2Llnu1
当粒子在多维目标寻找空间中运动时,相关变量的更新方程为:
p
i
,
j
(
t
)
=
φ
P
i
,
j
(
t
)
+
(
1
−
φ
)
G
j
(
t
)
,
1
≤
i
≤
M
,
1
≤
j
≤
D
p_{i,j}(t)=\varphi P_{i,j}(t)+(1-\varphi)G_{j}(t),1\leq i\leq M,1\leq j\leq D
pi,j(t)=φPi,j(t)+(1−φ)Gj(t),1≤i≤M,1≤j≤D
φ
=
c
1
r
1
/
(
c
1
r
1
+
c
2
r
2
)
\varphi=c_1r_1/(c_1r_1+c_2r_2)
φ=c1r1/(c1r1+c2r2)
L
i
,
j
(
t
)
=
2
β
∣
C
j
(
t
)
−
X
i
,
j
(
t
)
∣
L_{i,j}(t)=2\beta \begin{vmatrix} C_j(t)-X_{i,j}(t) \end{vmatrix}
Li,j(t)=2β
Cj(t)−Xi,j(t)
C
j
(
t
)
=
1
M
∑
i
=
1
M
P
i
,
j
(
t
)
C_{j}(t)=\frac{1}{M}\sum_{i=1}^{M}P_{i,j}(t)
Cj(t)=M1i=1∑MPi,j(t)
β
\beta
β为膨胀收缩因子,通常取一个固定值或从1线性减小到0.5。
C
j
(
t
)
C_j(t)
Cj(t)表示粒子群的平均最佳位置,
p
i
,
j
(
t
)
p_{i,j}(t)
pi,j(t)表示粒子的吸引子,由粒子的
p
b
e
s
t
p_{best}
pbest和
g
b
e
s
t
g_{best}
gbest决定。
变换后的粒子位置方程为:
X
i
,
j
(
t
+
1
)
=
p
i
,
j
(
t
)
±
β
∣
C
j
(
t
)
−
X
i
,
j
(
t
)
∣
ln
1
/
u
X_{i,j}(t+1)=p_{i,j}(t)\pm\beta\left|C_{j}(t)-X_{i,j}(t)\right|\ln1/u
Xi,j(t+1)=pi,j(t)±β∣Cj(t)−Xi,j(t)∣ln1/u
3.DM-QPSO算法
多样性迁移策略
DM-QPSO不仅结合了传统的迁移策略,还增加了一个新的度量标准,用于确定粒子的进化方向。计算种群的代表性量,并选择种群中具有最小平均汉明距离(HD)的个体作为迁移对象。通过计算种群中每个粒子的平均汉明距离,选择具有最小平均汉明距离的粒子作为迁移对象。粒子的平均汉明距离为:
m
e
a
n
_
H
=
1
M
(
M
−
1
)
/
2
∑
i
=
1
M
∑
i
=
j
+
1
M
H
(
P
i
,
P
j
)
mean\_H=\frac{1}{M\left(M-1\right)/2}\sum_{i=1}^{M}\sum_{i=j+1}^{M}H\left(P_{i},P_{j}\right)
mean_H=M(M−1)/21i=1∑Mi=j+1∑MH(Pi,Pj)
根据种群表示,可以选择具有最小平均汉明距离(HD)值的粒子,并将其添加到迁移目标列表中。为了确定需要迁移的粒子,存在两种情况:
(a) 当种群中没有两个或更多粒子具有相同的平均汉明距离时,选择具有最小平均汉明距离的粒子作为迁移候选粒子。
(b) 当种群中有两个或更多粒子具有相同的平均汉明距离时,将比较粒子群体之间的适应度值,并选择适应度最差的粒子作为迁移对象。为了移除最差的粒子并增加种群的多样性,使用适应度最小的粒子替代已确定的迁移对象。
伪代码
流程图
4.结果展示
5.参考文献
[1] Gong C, Zhou N, Xia S, et al. Quantum particle swarm optimization algorithm based on diversity migration strategy[J]. Future Generation Computer Systems, 2024, 157: 445-458.