2023年CIE SCI1区TOP:序列融合麻雀搜索算法ISSA,深度解析+性能实测


1.摘要

麻雀搜索算法(SSA)是一种基于麻雀觅食和防捕行为的群体智能算法。然而,基本SSA在迭代过程中,种群多样性逐渐降低,容易陷入局部最优解。为了解决这一问题,本文提出了五种改进麻雀搜索算法(ISSA 1-5),通过依次融合五种改进策略:改进的正弦映射、精英反向学习、正弦余弦算法、莱维飞行和高斯变异,从而提升SSA的性能。

2.麻雀搜索算法SSA原理

【智能算法】麻雀搜索算法(SSA)原理及实现

3.改进策略

改进正弦映射

实验表明,使用混沌映射进行种群初始化比使用伪随机数更为有效(Yu et al., 2018)。正弦映射具有无限的映射折叠次数,并表现出良好的混沌特性。因此,为了增加初始化的随机性并避免在后期迭代中种群多样性降低,本文提出了一种改进正弦混沌映射:
s j + 1 = ∣ sin ⁡ ( μ π s j ) ∣ , μ ∈ R s_{j+1}= \begin{vmatrix} \sin(\mu\pi s_j) \end{vmatrix},\mu\in R sj+1= sin(μπsj) ,μR

精英反向学习

精英反向学习(EOBL)利用精英个体在当前种群的基础上构建反向种群,并在当前种群和反向种群中选择较优的个体作为初始种群:
X i E ∗ = k ( α i + β i ) − X i E X_i^{E*}=k(\alpha_i+\beta_i)-X_i^E XiE=k(αi+βi)XiE

正弦余弦算法

本文将正弦余弦算法(SCA)的思想融入到生产者位置更新公式中,利用正弦余弦函数的振荡特性来保证生产者的搜索空间:
X i , j t + 1 = { X i , j t + r 1 ⋅ sin ⁡ ( r 2 ) ⋅ ∣ r 3 ⋅ X b e s t t − X i , j t ∣ if  R 2 < S T X i , j t + r 1 ⋅ cos ⁡ ( r 2 ) ⋅ ∣ r 3 ⋅ X b e s t t − X i , j t ∣ if  R 2 ≥ S T X^{t+1}_{i,j} = \begin{cases} X^{t}_{i,j} + r_1 \cdot \sin(r_2) \cdot |r_3 \cdot X^{t}_{best} - X^{t}_{i,j}| & \text{if } R_2 < ST \\ X^{t}_{i,j} + r_1 \cdot \cos(r_2) \cdot |r_3 \cdot X^{t}_{best} - X^{t}_{i,j}| & \text{if } R_2 \geq ST \end{cases} Xi,jt+1={Xi,jt+r1sin(r2)r3XbesttXi,jtXi,jt+r1cos(r2)r3XbesttXi,jtif R2<STif R2ST

流程图

3.结果展示




4.参考文献

[1] Li J, Chen J, Shi J. Evaluation of new sparrow search algorithms with sequential fusion of improvement strategies[J]. Computers & Industrial Engineering, 2023, 182: 109425.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值