2025年OE SCI2区TOP:多种群灰狼算法NCM-GWO,UUV群协同路径规划,深度解析+性能实测


1.摘要

路径规划对于实现无人水下航行器(UUV)集群在复杂和动态水下环境中的高效协同作业至关重要。本文提出了一种三维UUV集群协同路径规划框架,其基于改进灰狼算法NCM-GWO构建,其通过将布谷鸟搜索(CS)的全局搜索机制与多种群策略(MP)的局部精细化机制相结合,实现探索和开发之间实平衡。此外,NCM-GWO采用非线性搜索策略动态调整收敛因子,进一步增强了算法在复杂三维环境中的性能。

2.灰狼算法GWO原理

【智能算法】灰狼算法(GWO)原理及实现

3.协同路径规划

UUV群必须在复杂的水下环境中导航,包括声纳探测区和鱼雷威胁区,协同到达目标区域并执行后续操作。设 V = { V i , i = 1 , 2 , … , n } \mathcal{V}=\{V_i,i=1,2,\ldots,n\} V={Vi,i=1,2,,n}表示所有的无人水下航行器 (UUV) , T = { T i , i = \mathcal{T}=\{T_i,i= T={Ti,i= 1 , 2 , … , n } 1,2,\ldots,n\} 1,2,,n}表示它们各自的目标点, M = { M i , i = 1 , 2 , … , m } \mathcal{M}=\{M_i,i=1,2,\ldots,m\} M={Mi,i=1,2,,m}表示环境中的所有威胁。

对于每个UUV V i V_i Vi,起始点为 S i S_i Si ,目标点为 G i G_i Gi ,路径上的节点表示为 P i k P_i^k Pik。在约束条件 F F F下,从 S i S_i Si G i G_i Gi的路径轨迹可以表示:
S i → P i 1 → ⋯ → P i n k → G i S_i\to P_i^1\to\cdots\to P_i^{n_k}\to G_i SiPi1PinkGi

运动学约束

运动学约束源于无人水下航行器(UUV)固有的机动性限制。假设所有UUV具有一致的机动性能,所考虑的运动学约束包括潜水速度、倾斜角、偏航角、潜水深度和最大航程的限制:
{ v min ≤ v ≤ v max , − θ max ≤ θ ≤ θ max , − ϕ max ≤ ϕ ≤ ϕ max , h min ≤ h ≤ h max < 0 , 0 ≤ l ≤ l max \begin{equation*} \left\{ \begin{array}{l} v_{\text{min}} \leq v \leq v_{\text{max}}, \\ -\theta_{\text{max}} \leq \theta \leq \theta_{\text{max}}, \\ -\phi_{\text{max}} \leq \phi \leq \phi_{\text{max}}, \\ h_{\text{min}} \leq h \leq h_{\text{max}} < 0, \\ 0 \leq l \leq l_{\text{max}} \end{array} \right. \end{equation*} vminvvmax,θmaxθθmax,ϕmaxϕϕmax,hminhhmax<0,0llmax
其中, v v v为航行速度, θ \theta θ为倾斜角, ϕ \phi ϕ为偏航角, h h h为潜水深度, l l l为航行距离,定义每个无人潜航器的燃油成本函数和航行距离:
f o = l l max ⁡ f_o=\frac{l}{l_{\max}} fo=lmaxl
l i = ∥ S i − P i 1 ∥ + ∥ G i − P i n k ∥ + ∑ n k − 1 ∥ P i n − P i n + 1 ∥ l_i=\|S_i-P_i^1\|+\|G_i-P_i^{n_k}\|+\sum^{n_k-1}\|P_i^n-P_i^{n+1}\| li=SiPi1+GiPink+nk1PinPin+1

威胁约束

威胁约束主要是指任务环境中无法进入或只能短暂进入的区域,同时考虑了声纳威胁约束和鱼雷威胁约束。UUV声纳威胁代价函数定义为:
f t s = { 0 , i f d > d t s , 1 d 2 , i f d ≤ d t s , f_{ts}= \begin{cases} 0, & \mathrm{if}d>d_{ts}, \\ \frac{1}{d^{2}}, & \mathrm{if}d\leq d_{ts}, & \end{cases} fts={0,d21,ifd>dts,ifddts,
UUV的鱼雷威胁代价函数定义为:
f t t = { 0 , i f d > d t t , 1 d , i f d ≤ d t t , f_{tt}= \begin{cases} 0, & \mathrm{if}d>d_{tt}, \\ \frac{1}{d}, & \mathrm{if}d\leq d_{tt}, & \end{cases} ftt={0,d1,ifd>dtt,ifddtt,

空间约束

空间协同约束主要解决无人潜航器之间的避碰问题。在无人潜航器群的协调运动中,任意两个无人潜航器之间的距离必须不小于安全距离:
d i , j ≥ d s a f e d_{i,j}\geq d_{safe} di,jdsafe

时间约束

时间协同约束主要是指在协同任务中,每个无人潜航器必须在规定时间内完成其任务的要求。根据UUV的速度范围和路径轨迹的长度,可以确定到达目标点的时间范围如下:
t min ⁡ i = l i v max ⁡ i , t max ⁡ i = l i v min ⁡ i , t_{\min}^i=\frac{l_i}{v_{\max}^i},\quad t_{\max}^i=\frac{l_i}{v_{\min}^i}, tmini=vmaxili,tmaxi=vminili,

时间成本计算如下:
f t = { 0 , t min ⁡ i ≤ t c ≤ t max ⁡ i , ∣ t i − t c ∣ , otherwise, f_t= \begin{cases} 0, & t_{\min}^i\leq t_c\leq t_{\max}^i, \\ \left|t_i-t_c\right|, & \text{otherwise,} & \end{cases} ft={0,titc,tminitctmaxi,otherwise,

路径平滑性约束

规划路径的平滑度是UUV群路径规划的关键因素。为了量化平滑度引入了统一成本函数:
f s = ∑ i = 1 n − 1 { 1 , i f ∣ Δ θ i ∣ > θ max ⁡ o r ∣ Δ ϕ i ∣ > ϕ max ⁡ 0 , o t h e r w i s e , f_s=\sum_{i=1}^{n-1} \begin{cases} 1, & \mathrm{if}|\Delta\theta_i|>\theta_{\max}\mathrm{or}|\Delta\phi_i|>\phi_{\max} \\ 0, & \mathrm{otherwise} & \end{cases}, fs=i=1n1{1,0,if∣Δθi>θmaxor∣Δϕi>ϕmaxotherwise,

优化目标:
J 1 = ∑ i = 1 n ( w o f o + w h f h + w t s f t s + w t t f t t + w s f s ) J_1=\sum_{i=1}^n\left(w_of_o+w_hf_h+w_{ts}f_{ts}+w_{tt}f_{tt}+w_sf_s\right) J1=i=1n(wofo+whfh+wtsfts+wttftt+wsfs)

多uuv的导航成本主要考虑协同约束,包括空间协同约束成本和时间协同约束成本:
J 2 = ∑ i = 1 n ( w c f c + w t f t ) J_2=\sum_{i=1}^n \begin{pmatrix} w_cf_c+w_tf_t \end{pmatrix} J2=i=1n(wcfc+wtft)

4.改进策略

布谷鸟搜索机制

灰狼位置更新为:
{ X c s 1 = X 1 + δ × ( X 1 − X α ) × s , X c s 2 = X 2 + δ × ( X 2 − X α ) × s , X c s 3 = X 3 + δ × ( X 3 − X α ) × s , \begin{cases} \boldsymbol{X}_{cs}^1=\boldsymbol{X}_1+\delta\times\left(\boldsymbol{X}_1-\boldsymbol{X}_\alpha\right)\times s, \\ \boldsymbol{X}_{cs}^2=\boldsymbol{X}_2+\delta\times\left(\boldsymbol{X}_2-\boldsymbol{X}_\alpha\right)\times s, \\ \boldsymbol{X}_{cs}^3=\boldsymbol{X}_3+\delta\times\left(\boldsymbol{X}_3-\boldsymbol{X}_\alpha\right)\times s, & \end{cases} Xcs1=X1+δ×(X1Xα)×s,Xcs2=X2+δ×(X2Xα)×s,Xcs3=X3+δ×(X3Xα)×s,
布谷鸟搜索机制概率地丢弃先前更新的位置,并通过随机游走更新:
X n e w k = { X c s k + ( X i − X j ) , i f κ k > p a , X c s k , i f κ k ≤ p a , f o r k = 1 , 2 , 3. \boldsymbol{X}_{new}^k= \begin{cases} \boldsymbol{X}_{cs}^k+(\boldsymbol{X}_i-\boldsymbol{X}_j), & \mathrm{if}\kappa_k>p_a, \\ \boldsymbol{X}_{cs}^k, & \mathrm{if}\kappa_k\leq p_a, & \end{cases}\quad\mathrm{for}k=1,2,3. Xnewk={Xcsk+(XiXj),Xcsk,ifκk>pa,ifκkpa,fork=1,2,3.
GWO核心更新为:
X ( t + 1 ) = X n e w 1 ( t + 1 ) + X n e w 2 ( t + 1 ) + X n e w 3 ( t + 1 ) 3 X(t+1)=\frac{X_{new}^1(t+1)+X_{new}^2(t+1)+X_{new}^3(t+1)}{3} X(t+1)=3Xnew1(t+1)+Xnew2(t+1)+Xnew3(t+1)

多种群机制

多种群机制将一个大种群细分为多种群,每个种群包含一组独立的灰狼,这样的分组使得不同种群可以同时在解空间的不同区域进行探索。

伪代码

5.结果展示

论文结果,UUV群协同路径规划可做




6.参考文献

[1] Xu H, Xiang X, Yan C, et al. Grey wolf optimization enhanced collaborative path planning for UUV swarms[J]. Ocean Engineering, 2025, 329: 121082.

7.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值