异质图神经网络(持续更新ing...)

诸神缄默不语-个人CSDN博文目录

本文将对异质图神经网络(HGNN, heterogeneous graph neural networks)的方法演变进行梳理和介绍。

1. 异质图

节点或者边的种类>1即可。
如果节点种类为1,边种类>1,叫multiplex graph。

在这里插入图片描述

2. 处理为同质图

直接将节点类型和边类型编码到节点属性中

缺点:不符合GNN内蕴的smoothness假设1,节点/边类型是离散数值,往往与节点特征不共享结构。

3. 知识图谱嵌入

  1. TransE: Translating Embeddings for Modeling Multi-relational Data
  2. DistMult
  3. ComplEx
  4. RotatE
    (2019 ICLR) RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space

这部分我之前写过相关的博文:cs224w(图机器学习)2021冬季课程学习笔记12 Knowledge Graph Embeddings_诸神缄默不语的博客-CSDN博客

RotatE的官方项目,但是集成了各种嵌入模型:DeepGraphLearning/KnowledgeGraphEmbedding

其他集成性参考资料:【知识图谱】知识图谱嵌入模型简介

4. 传统图学习方法

4.1 meta-path系

random walk / PageRank
skip-gram

PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks

Meta-Path-Based Ranking with Pseudo Relevance Feedback on Heterogeneous Graph for Citation Recommendation

metapath2vec: Scalable Representation Learning for Heterogeneous Networks:基于metapaths的随机游走+heterogenous skip-gram

HERec: Heterogeneous Information Network Embedding for Recommendation:根据metapath邻居将异质图转换为同质图,用类似DeepWalk的方法学习表征

HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning:捕获并区别metapaths的信息
多任务学习目标(同时学习节点和metapath的表征)

4.2 subgraph系

将每种关系下的图视作一个子图,然后联合学习这些子图:

Embedding of Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks

PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks:将LINE扩展到异质图上

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks

4.3 其他

  1. 嵌入到不同的空间中,或relation embedding:
    1. HEER: (2018 KDD) Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks:考虑异质图中类型不同导致的语义不兼容问题2
      改进PTE,通过边表征考虑种类相似性
    2. (2018 KDD) PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction3
      度量学习
    3. (2020 ICLR) Composition-based Multi-Relational Graph Convolutional Networks:差不多意思就是在同质图GNN上加个关系嵌入。我记得同质图GNN那边也有加上边嵌入的,但是我没关注过这块儿的研究
  2. BHIN2vec: Balancing the Type of Relation in Heterogeneous Information Network:随机游走+skip gram+多任务,解决HIN中不同种类边数不平衡的问题
  3. HAKE: (2020 AAAI) Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction
    将实体映射到极坐标系中,建模知识图谱中的语义层次结构
    径向坐标旨在建模不同层次的实体,半径较小的实体预计处于更高的层次;角度坐标旨在区分处于同一层次的实体,这些实体预计具有大致相同的半径但不同的角度。4

5. GNN + Bi-level aggregation scheme

首先聚合同一类/组中的邻居,然后对其进行聚合(求平均或用注意力机制加权求和)。

在这里插入图片描述

RGCN: Modeling Relational Data with Graph Convolutional Networks:每种边一个图卷积层

(2019 NeurIPS) GTN: Graph Transformer Networks:自动学习metapaths(通过图transformer层生成所有可能的联系,在新图上运行图神经网络)

(2019 WWW) HAN: Heterogeneous Graph Attention Network:attentively聚合metapath-based neighborhoods学到的特征

(2019 KDD) HetGNN: Heterogeneous Graph Neural Network:用RWR抽样异质邻居,按节点类型分类,然后聚合

(2020 WWW) MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding:首先对节点特征进行转换,然后聚合metapath内部信息,然后聚合各metapath的信息

GATNE: Representation Learning for Attributed Multiplex Heterogeneous Network5

(2020 WWW) HGT: Heterogeneous Graph Transformer:对每个边建模异质attention,隐式学习metapath

缺点:可能会忽略节点信息(尤其在关系种类不平衡时,大类的节点个体信息可能会被忽略 (downweight))

6. GNN + 自监督学习

  1. 综述
    Self-supervised on Graphs: Contrastive, Generative, or Predictive
  2. 研究工作
    1. (2019) HDGI: Heterogeneous Deep Graph Infomax
    2. (2020 AAAI) DMGI: Unsupervised Attributed Multiplex Network Embedding:对齐每个视图(通过metapaths生成)上的原始网络和corrupted网络
    3. (2021 KDD) HeCo: Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning:基于metapaths和network分别构建视图
    4. (2022 SDM) STENCIL: Structure-Enhanced Heterogeneous Graph Contrastive Learning:跨视图+对比学习+结构嵌入
      跨视图:保证视图之间一致性最大化→基于metapaths构建视图(metapath实例起终点构成的同质图)→最大化同一节点在不同视图上嵌入的相似性→将各视图的嵌入attentively聚合
      结构学习:认为节点嵌入点击不足以建模节点相似性,所以补充了PPR和Laplacian positional embedding

7. 其他

  1. 一步聚合
    1. HIME: Heterogeneous graph embedding with single-level aggregation and infomax encoding
      对节点特征应用MLP(每一种节点用一个模型),直接进行聚合。损失函数鼓励邻居相近+信息最大化(以促进同质性)
  2. 考虑不同模态、不同transductive/inductive场景下的GNN场景
    inductive链路预测:
    DEAL Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
    LeSICiN Re6:读论文 LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification fro
    这两篇本身做的任务都很niche,但是我认为这个研究topic本身是可以很general、是很有研究价值的(意思是我觉得前途无量,但是我不会做)

8. 其他参考资料

  1. Heterogeneous Information Network Analysis and Applications
  2. (2022 Transactions on Big Data) A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources

  1. Revisiting Graph Neural Networks: All We Have is Low-Pass Filters ↩︎

  2. 相关阅读笔记博文:
    【论文泛读】Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks_JinyuZ1996的博客-CSDN博客
    【论文解读 KDD 2018 | HEER】Easing Embedding Learning by Comprehensive Transcription of HIN_byn12345的博客-CSDN博客 ↩︎

  3. 还没看,但是可资参考的阅读笔记博文:【论文解读 KDD 2018 | PME】PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction_pme 算法_byn12345的博客-CSDN博客 ↩︎

  4. 还没看,但是可资参考的阅读笔记博文:可建模语义分层的KG embedding for relation/link completion_秃然变强了的博客-CSDN博客
    AAAI 2020 开源论文 | 可建模语义分层的知识图谱补全方法 ↩︎

  5. 相关阅读笔记博文:
    GATNE代码部分讲解_酸辣螺丝粉的博客-CSDN博客 ↩︎

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值