YOLO11有效涨点优化:小目标检测 | 多头检测器提升小目标检测精度

针对小目标检测的痛点问题,新增160×160高分辨率检测头,配合动态蛇形卷积PIoU损失函数,让小目标无处遁形!

一、为什么小目标检测如此困难?

在计算机视觉领域,小目标检测(目标尺寸小于32×32像素)一直是个世界性难题。在无人机巡检、遥感图像分析、工业质检等场景中,小目标漏检率往往高达40%以上。究其原因,主要有三点挑战:

  • 特征信息严重丢失:以YOLO11为例,输入图像640×640经过32倍下采样后只剩20×20特征图,微小目标的高频细节特征几乎完全丢失
  • 有效感受野不足:标准卷积的固定采样模式难以适应小目标的高斯分布特性,导致特征提取不充分
  • 定位精度低下:传统IoU损失对微小目标的位置偏差极度敏感,几个像素的偏移就会导致检测失败

二、四头检测器的核心创新

2.1 多尺度检测头架构对比

YOLO11默认采用三检测头结构,我们通过增加P2/4检测头实现四头检测:

检测头名称 特征
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芯作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值