球坐标系(Spherical coordinate system )简单总结

简介

在学术界内,关于球坐标系的标记有好几个不同的约定。按照国际标准化组织建立的约定(ISO 31-11),径向距离、天顶角、方位角,分别标记为  。这种标记在世界各地有许多使用者。通常,物理界的学者也采用这种标记。而在数学界,天顶角与方位角的标记正好相反:  被用来代表天顶角,  被用来代表方位角。数学界的球坐标标记是 

### 三维极坐标系与笛卡尔坐标系的转换 在三维空间中,极坐标系通常被称为球坐标系 (Spherical Coordinate System),它由三个参数组成:半径 \(r\)、天顶角 \(\theta\) 和方位角 \(\phi\)。而笛卡尔坐标系则通过 \(x\), \(y\), \(z\) 来表示位置。 #### 坐标转换公式 从笛卡尔坐标系到球坐标系的转换可以通过以下公式实现: \[ r = \sqrt{x^2 + y^2 + z^2} \] \[ \theta = \arccos{\left( \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)} \] \[ \phi = \arctan{\left( \frac{y}{x} \right)} \][^1] 反向转换(即从球坐标系回到笛卡尔坐标系)可使用如下公式: \[ x = r \sin{\theta} \cos{\phi} \] \[ y = r \sin{\theta} \sin{\phi} \] \[ z = r \cos{\theta} \][^3] 这些公式的推导基于几何关系以及三角函数的应用,在实际工程和科学领域中有广泛应用。 #### 应用场景 这种转换广泛应用于物理学、计算机图形学等领域。例如,在电磁场理论中,许多问题更自然地描述于坐标下;而在机器人运动规划或者地理信息系统(GIS)中,可能需要频繁进行此类坐标的互换操作[^4]。 以下是Python代码示例展示如何完成上述两种坐标间的相互转化: ```python import numpy as np def cartesian_to_spherical(x, y, z): r = np.sqrt(x**2 + y**2 + z**2) theta = np.arccos(z / r) phi = np.arctan2(y, x) return r, theta, phi def spherical_to_cartesian(r, theta, phi): x = r * np.sin(theta) * np.cos(phi) y = r * np.sin(theta) * np.sin(phi) z = r * np.cos(theta) return x, y, z # Example usage: x, y, z = 1, 1, 1 r, theta, phi = cartesian_to_spherical(x, y, z) print(f"Spherical coordinates: r={r}, θ={np.degrees(theta)}, φ={np.degrees(phi)}") converted_x, converted_y, converted_z = spherical_to_cartesian(r, theta, phi) print(f"Converted back Cartesian coordinates: ({converted_x}, {converted_y}, {converted_z})") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李锐博恩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值