积分第一中值定理与伏汝兰尼(Froullani)积分

积分第一中值定理与腐乳烂泥积分伏汝兰尼(Froullani)积分
积分第一中值定理:
f ( ξ ) ( b − a ) = ∫ a b f ( x ) d x f(ξ)(b-a)=\int_{a}^{b}f(x)dx f(ξ)(ba)=abf(x)dx
证明方法一:闭区间上连续函数的最值与介值定理
https://baike.baidu.com/item/%E7%A7%AF%E5%88%86%E7%AC%AC%E4%B8%80%E4%B8%AD%E5%80%BC%E5%AE%9A%E7%90%86/19206375?fr=aladdin

证明方法二:对F(x)使用拉格朗日中值定理或罗尔定理
F ( x ) = ∫ a x f ( x ) d x , F ( x ) 可 导 F(x)=\int_{a}^{x}f(x)dx ,F(x)可导 F(x)=axf(x)dx,F(x)


推广:
∫ a b g ( x ) f ( x ) d x = g ( ξ ) ∫ a b f ( x ) d x \int_{a}^{b}g(x)f(x)dx =g(ξ)\int_{a}^{b}f(x)dx abg(x)f(x)dx=g(ξ)abf(x)dx

如果函数f 在闭区间 上连续,g 在闭区间 上不变号,并且 g在闭区间 上是可积的

证明方法:最值介值定理和柯西中值(证明闭区间结论的一定是牵扯到函数的连续性,开区间的一定是出现在微分中值定理)

伏汝兰尼(Froullani)积分:
∫ m M f ( a x ) − f ( b x ) x \int_{m}^M \frac{f(ax)-f(bx)}{x} mMxf(ax)f(bx)
∫ m a M a f ( x ) − f ( x ) x − ∫ m b M b f ( x ) − f ( x ) x \int_{ma}^{Ma} \frac{f(x)-f(x)}{x} -\int_{mb}^{Mb} \frac{f(x)-f(x)}{x} maMaxf(x)f(x)mbMbxf(x)f(x)

∫ m a m b f ( x ) − f ( x ) x − ∫ M a M b f ( x ) − f ( x ) x \int_{ma}^{mb} \frac{f(x)-f(x)}{x} -\int_{Ma}^{Mb} \frac{f(x)-f(x)}{x} mambxf(x)f(x)MaMbxf(x)f(x)

然后使用积分中值定理计算极限的方法,提出定值即可

注:广泛的联系 拉格朗日的证明方法有一种分析方法是构造原函数G(a)=G(b),罗尔定理。

罗尔定理的证明使用闭区间函数的最值定理与费马引理[每一个可导的极值点都是驻点]

伏汝兰尼(Froullani)积分
还可用参变量的积分证明*

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值