点估计之矩估计

矩 估 计 d e 原 理 : E ( 1 n ∑ i = 1 n x i k ) = E ( x k ) ( 总 体 的 k 阶 中 心 矩 f ( θ ) ) 矩估计de原理:E(\frac{1}{n}\sum_{i=1}^{n}x_{i}^k)=E(x^k)(总体的k阶中心矩f(\theta )) deE(n1i=1nxik)=E(xk)(kf(θ))
证 明 : ∵ X i 与 X 同 分 布 , 且 期 望 具 有 线 性 性 质 ∴ E ( X i k ) = E ( X k ) , E ( 1 n ∑ i = 1 n x i k ) = E ( x k ) 用 1 n ∑ i = 1 n x i k = E ( x k ) ( 总 体 的 k 阶 中 心 矩 f ( θ ) ) 估 计 参 数 θ 证明:\because X_i与X同分布,且期望具有线性性质\\ \therefore E(X_i^k)=E(X^k),E(\frac{1}{n}\sum_{i=1}^{n}x_{i}^k)=E(x^k)\\ 用 \frac{1}{n}\sum_{i=1}^{n}x_{i}^k =E(x^k)(总体的k阶中心矩f(\theta ))估计参数\theta XiX,线E(Xik)=E(Xk),E(n1i=1nxik)=E(xk)n1i=1nxik=E(xk)(kf(θ))θ

矩 ( x n 的 期 望 ) 估 计 : { 对 总 体 的 均 值 与 方 差 的 估 计 : μ ^ = 1 n ∑ x i , σ ^ 2 = 1 n ∑ ( x i − x ˉ ) 2 ( 有 偏 ) 或 1 n − 1 ∑ ( x i − x ˉ ) 2 ( 无 偏 ) 用 参 数 表 示 矩 后 , 由 等 式 关 系 解 出 参 数 矩(x^n的期望)估计:\\ \begin{cases} 对总体的均值与方差的估计 : \hatμ=\frac{1}{n}\sum x_i,\hatσ^2=\frac{1}{n}\sum (x_i-\bar x)^2(有偏)或\frac{1}{n-1}\sum (x_i-\bar x)^2(无偏)\\ 用参数表示矩后,由等式关系解出参数 \end{cases} (xn){:μ^=n1xi,σ^2=n1(xixˉ)2()n11(xixˉ)2()

例:

设 总 体 X 的 分 布 函 数 为 F ( x , β ) = { 1 − 1 x β ,   x > 1 0 ,     x ≤ 1 其 中 未 知 参 数 β > 1 , X 1 , X 2 , X 3 … … X n 是 来 自 总 体 的 简 单 随 机 样 本 , 求 β 的 矩 估 计 量 设总体X的分布函数为 \\ F(x,β)=\begin{cases} 1-\frac{1}{x^β } ,\ x>1 \\ 0,\ \ \ x\le1 \end{cases}\\ 其中未知参数β>1,X_1,X_2,X_3……X_n是来自总体的简单随机样本,\\求β的矩估计量 XF(x,β)={1xβ1, x>10,   x1β>1,X1X2X3Xnβ
解 : X 的 概 率 密 度 函 数 为 f ( x , β ) = { β x β + 1 ,   x > 1 0 ,     x ≤ 1 E ( X ) = ∫ − ∞ + ∞ x f ( x , β ) d x = ∫ 0 + ∞ x β x β + 1 d x = β β − 1 令 E ( X ) = X ˉ ( ∗ ∗ ∗ ) 解 得 β = X ˉ X ˉ − 1 解:X的概率密度函数为f(x,β)= \begin{cases} \frac{β}{x^{β+1} } ,\ x>1 \\ 0,\ \ \ x\le1 \end{cases} \\ E(X)=\int_{-\infty}^{+\infty}xf(x,β)dx=\int_{0}^{+\infty}x\frac{β}{x^{β+1} }dx =\frac{β}{β-1} \\ 令 E(X)= \bar X (***)\\解得 β=\frac{\bar X}{\bar X-1} Xf(x,β)={xβ+1β, x>10,   x1E(X)=+xf(x,β)dx=0+xxβ+1βdx=β1βE(X)=Xˉ()β=Xˉ1Xˉ

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值