随机过程:泊松过程性质

(0) X i X_i Xi 独立同分布 λ e λ x i \lambda e^{\lambda x_i} λeλxi
证 明 独 立 同 分 布 P ( A B ) = P ( A ) ∗ P ( B ∣ A ) = P ( A ) ∗ P ( B ) 由 泊 松 过 程 的 定 义 , 先 求 X 1 的 分 布 函 数 P ( X 1 ≤ x 1 ) , P ( X 1 > x 1 ) = P ( N x 1 = 0 ) = e − λ x 1 X 1 的 分 布 密 度 为 : ( 1 − e − λ x 1 ) ′ = λ e − λ x 1 P ( X 2 > x 2 ∣ X 1 = x 1 ) = e − λ x 2 结 果 与 X 1 的 取 值 无 关 , X 1 与 X 2 无 关 \href{https://zhidao.baidu.com/question/1244736232326134019.html}{证明独立同分布P(AB)=P(A)*P(B|A)=P(A)*P(B)}\\ 由泊松过程的定义,先求X_1的分布函数P(X_1\leq x_1),\\ P(X_1>x_1)=P(N_{x_1}=0)=e^{-\lambda x_1}\\ X_1的分布密度为:(1-e^{-\lambda x_1})'=\lambda e^{-\lambda x_1}\\ P(X_2>x_2|X_1=x_1)=e^{-\lambda x_2}\\ \color{red} 结果与X_1的取值无关,X_1与X_2无关 P(AB)=P(A)P(BA)=P(A)P(B)X1P(X1x1)P(X1>x1)=P(Nx1=0)=eλx1X1(1eλx1)=λeλx1P(X2>x2X1=x1)=eλx2X1X1X2

泊 松 过 程 { N t , t ≥ 0 } ( 1 ) 当 s < t , P ( N s = k ∣ N t = n ) = C n k ( s t ) k ( 1 − s t ) n − k , k = 0 , 1 , … , n 泊松过程\{N_t,t\geq 0\} \\ (1) 当s < t,P(N_s=k|N_t=n)=C_n^k(\frac{s}{t})^k(1-\frac{s}{t})^{n-k},k=0,1,…,n {Nt,t0}(1)s<t,P(Ns=kNt=n)=Cnk(ts)k(1ts)nk,k=0,1,n
在这里插入图片描述
泊 松 过 程 { N t , t ≥ 0 } ( 2 ) 在 [ 0 , t ] 内 事 件 A 已 经 发 生 n 次 , 求 第 k 次 发 生 时 间 S k 的 条 件 概 率 密 度 ( S n 服 从 参 数 为 n , λ 的 分 布 密 度 f ( t ) = λ e − λ t ( λ t ) n − 1 ( n − 1 ) ! , t ≥ 0 ) 泊松过程\{N_t,t\geq 0\} \\ (2) 在[0,t]内事件A已经发生n次,求第k次发生时间S_k的条件概率密度(S_n服从参数为\color{red}n,\lambda \color{black} 的分布密度f(t)=\lambda e^{-\lambda t}\frac{(\lambda t)^{n-1}}{(n-1)!},t\geq 0) {Nt,t0}(2)[0,t]AnkSkSnn,λf(t)=λeλt(n1)!(λt)n1,t0
先 求 分 布 函 数 , 再 求 其 微 分 的 极 限 P ( s < S k ≤ s + h ∣ N t = n )                          = P ( s < S k ≤ s + h , N t = n ) P ( N t = n )                              = P ( s < S k ≤ s + h , N t − N s + h = n − k ) P ( N t = n )           利 用 b o s s i o n 过 程 独 立 增 量 性 = P ( s < S k ≤ s + h ) ∗ P ( N t − N s + h = n − k ) P ( N t = n ) 先求分布函数,再求其微分的极限\\ P(s< S_k\leq s+h|N_t=n) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =\frac{P(s< S_k\leq s+h,N_t=n)}{P(N_t=n)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ =\frac{P(s< S_k\leq s+h,N_t-N_{s+h}=n-k)}{P(N_t=n)} \ \ \ \ \ \ \ \ \ \\ \tiny 利用bossion过程独立增量性 \normalsize \\ =\frac{P(s< S_k\leq s+h)*P(N_t-N_{s+h}=n-k)}{P(N_t=n)} \\ P(s<Sks+hNt=n)                        =P(Nt=n)P(s<Sks+h,Nt=n)                            =P(Nt=n)P(s<Sks+h,NtNs+h=nk)         bossion=P(Nt=n)P(s<Sks+h)P(NtNs+h=nk)

S k 的 条 件 概 率 密 度 分 布 , P ( s ∣ S t = n ) = f ( s ) = lim ⁡ h → 0 P ( s < S k ≤ s + h ) ∗ P ( N t − N s + h = n − k ) h ∗ P ( N t = n ) = P ( N t − N s = n − k ) P ( N t = n ) ∗ lim ⁡ h → 0 P ( s < S k ≤ s + h ) h = P ( N t − N s = n − k ) P ( N t = n ) ∗ λ e − λ s ( λ s ) k − 1 ( k − 1 ) ! n ! ( k − 1 ) ! ( n − k ) ! s k − 1 t k ( 1 − s t ) n − k S_k的条件概率密度分布,P(s|S_t=n)=f(s)\\ =\lim_{h\rightarrow 0}\frac{P(s< S_k\leq s+h)*P(N_t-N_{s+h}=n-k)}{h*P(N_t=n)} \\ =\frac{ P(N_t-N_{s}=n-k)}{P(N_t=n)}*\lim_{h\rightarrow 0}\frac{P(s< S_k\leq s+h)}{h} \\ =\frac{ P(N_t-N_{s}=n-k)}{P(N_t=n)}*\lambda e^{-\lambda s}\frac{(\lambda s)^{k-1}}{(k-1)!} \\ \frac{n!}{(k-1)! (n-k)!}\frac{s^{k-1}}{t^k}(1-\frac{s}{t})^{n-k} SkP(sSt=n)=f(s)=h0limhP(Nt=n)P(s<Sks+h)P(NtNs+h=nk)=P(Nt=n)P(NtNs=nk)h0limhP(s<Sks+h)=P(Nt=n)P(NtNs=nk)λeλs(k1)!(λs)k1(k1)!(nk)!n!tksk1(1ts)nk

以 上 方 法 与 根 据 已 知 的 分 布 密 度 函 数 直 接 计 算 相 同 更 简 单 地 直 接 带 入 : P ( N t − N s = n − k ) P ( N t = n ) ∗ f S k ( s ) 以上方法与根据已知的分布密度函数直接计算相同\\ 更简单地直接带入:\frac{ P(N_t-N_{s}=n-k)}{P(N_t=n)}*f_{S_k}(s) P(Nt=n)P(NtNs=nk)fSk(s)

( 3 ) 两 个 随 机 过 程 的 和 是 随 机 过 程 (3) 两个随机过程的和是随机过程 (3)
也 算 是 继 承 了 泊 松 分 布 ( 是 满 足 可 加 性 的 分 布 ) 的 特 性 ( 利 用 指 数 函 数 的 加 变 × 性 质 ) \tiny 也算是继承了泊松分布(是满足可加性的分布)的特性(利用指数函数的加变×性质) (×)
φ N 1 ( u ) = e ( λ 1 ∗ t ) ∗ ( e i u − 1 ) φ N 2 ( u ) = e ( λ 2 ∗ t ) ∗ ( e i u − 1 ) N 1 ( t ) + N 2 ( t ) 的 特 征 函 数 : φ N 1 + N 2 ( u ) = E ( e i u ∗ ( N 1 ( t ) + N 2 ( t ) ) ) X , Y 独 立 ⇒ E ( f ( X ) ∗ g ( Y ) ) = E ( f ( X ) ) ∗ E ( g ( Y ) ) E ( e i u ∗ ( N 1 ( t ) + N 2 ( t ) ) ) = E ( e i u ∗ N 1 ( t ) ) ∗ E ( e i u ∗ N 2 ( t ) ) = e ( λ 1 ∗ t ) ∗ ( e i u − 1 ) ∗ e ( λ 2 ∗ t ) ∗ ( e i u − 1 ) = e ( λ 1 ∗ t + λ 2 ∗ t ) ∗ ( e i u − 1 ) 由 特 征 函 数 与 分 布 的 一 一 对 应 关 系 可 得 N 1 ( t ) + N 2 ( t ) 是 强 度 为 λ 1 + λ 2 的 随 机 过 程 φ_{N_1}(u)=e^{(\lambda_1 *t)*(e^{iu}-1)}\\ φ_{N_2}(u)=e^{(\lambda_2 *t)*(e^{iu}-1)} \\ N_1(t)+N_2(t)的特征函数:φ_{N_1+N_2}(u)=E(e^{iu*(N_1(t)+N_2(t))})\\ \color{red} X,Y独立 \Rightarrow E(f(X)*g(Y))=E(f(X))*E(g(Y)) \color{balck}\\ E(e^{iu*(N_1(t)+N_2(t))})=E(e^{iu*N_1(t)})*E(e^{iu*N_2(t)})\\ =e^{(\lambda_1 *t)*(e^{iu}-1)}*e^{(\lambda_2 *t)*(e^{iu}-1)}\\ =e^{(\lambda_1 *t+\lambda_2 *t)*(e^{iu}-1)}\\ 由特征函数与分布的一一对应关系可得N_1(t)+N_2(t)是强度为\lambda_1 +\lambda_2的随机过程 φN1(u)=e(λ1t)(eiu1)φN2(u)=e(λ2t)(eiu1)N1(t)+N2(t)φN1+N2(u)=E(eiu(N1(t)+N2(t)))X,YE(f(X)g(Y))=E(f(X))E(g(Y))E(eiu(N1(t)+N2(t)))=E(eiuN1(t))E(eiuN2(t))=e(λ1t)(eiu1)e(λ2t)(eiu1)=e(λ1t+λ2t)(eiu1)N1(t)+N2(t)λ1+λ2

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值