1.全微分方程
若存在函数
u
(
x
,
y
)
u(x,y)
u(x,y)使得
d
u
(
x
,
y
)
=
f
(
x
,
y
)
d
x
+
g
(
x
,
y
)
d
y
du(x,y)=f(x,y)dx+g(x,y)dy
du(x,y)=f(x,y)dx+g(x,y)dy
则称方程
f
(
x
,
y
)
d
x
+
g
(
x
,
y
)
d
y
=
0
f(x,y)dx+g(x,y)dy=0
f(x,y)dx+g(x,y)dy=0
为全微分方程。显然,它的解可以表示为
u
(
x
,
y
)
=
C
u(x,y)=C
u(x,y)=C
我们已经知道,
f
(
x
,
y
)
d
x
+
g
(
x
,
y
)
d
y
f(x,y)dx+g(x,y)dy
f(x,y)dx+g(x,y)dy在单连通区域上是某个函数的全微分的充分必要条件(判断条件)是
∂
f
(
x
,
y
)
∂
y
=
∂
g
(
x
,
y
)
∂
x
\frac{\partial f(x,y)}{\partial y}=\frac{\partial g(x,y)}{\partial x}
∂y∂f(x,y)=∂x∂g(x,y)
此时,若
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)是所考虑区域中的任一定点,则可以通过曲线积分
u
(
x
,
y
)
=
∫
(
x
0
,
y
0
)
(
x
,
y
)
f
(
x
,
y
)
d
x
+
g
(
x
,
y
)
d
y
u(x,y)=\int_{(x_0,y_0)}^{(x,y)}f(x,y)dx+g(x,y)dy
u(x,y)=∫(x0,y0)(x,y)f(x,y)dx+g(x,y)dy
计算出
u
(
x
,
y
)
u(x,y)
u(x,y)。
例1:求微分方程
(
e
x
s
i
n
y
−
m
x
)
y
′
=
e
x
c
o
s
y
+
m
y
(e^xsiny-mx)y'=e^xcosy+my
(exsiny−mx)y′=excosy+my
的通解(m是常数)。
解:将其改写为
(
e
x
c
o
s
y
+
m
y
)
d
x
+
(
−
e
x
s
i
n
y
+
m
x
)
d
y
=
0
(e^xcos y+my)dx+ (-e^xsiny+mx)dy=0
(excosy+my)dx+(−exsiny+mx)dy=0
由
∂
f
(
x
,
y
)
∂
y
=
−
e
x
s
i
n
y
+
m
=
∂
g
(
x
,
y
)
∂
x
\frac{\partial f(x,y)}{\partial y}=-e^xsiny+m=\frac{\partial g(x,y)}{\partial x}
∂y∂f(x,y)=−exsiny+m=∂x∂g(x,y)
知道它是全微分方程。取
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)为
(
0
,
0
)
(0,0)
(0,0),则
u
(
x
,
y
)
=
∫
0
x
(
e
x
c
o
s
y
+
m
y
)
d
x
+
∫
0
y
(
−
s
i
n
y
)
d
y
=
e
x
c
o
s
y
+
m
x
y
−
1
u(x,y)=\int_0^{x}(e^xcosy+my)dx+\int_0^y(-siny)dy=e^xcosy+mxy-1
u(x,y)=∫0x(excosy+my)dx+∫0y(−siny)dy=excosy+mxy−1
所以它的通解为
e
x
c
o
s
y
+
m
x
y
=
C
e^xcosy+mxy=C
excosy+mxy=C
若条件
∂
f
(
x
,
y
)
∂
y
=
∂
g
(
x
,
y
)
∂
x
\frac{\partial f(x,y)}{\partial y}=\frac{\partial g(x,y)}{\partial x}
∂y∂f(x,y)=∂x∂g(x,y)
不满足,则方程
f
(
x
,
y
)
d
x
+
g
(
x
,
y
)
d
y
=
0
f(x,y)dx+g(x,y)dy=0
f(x,y)dx+g(x,y)dy=0
不是全微分。但是,如果此时能够找到一个函数
μ
(
x
,
y
)
\mu(x,y)
μ(x,y),使得
μ
(
x
,
y
)
f
(
x
,
y
)
d
x
+
μ
(
x
,
y
)
g
(
x
,
y
)
d
y
=
0
\mu(x,y)f(x,y)dx+\mu(x,y)g(x,y)dy=0
μ(x,y)f(x,y)dx+μ(x,y)g(x,y)dy=0
是全微分,那么,还是可以按上述方法求解。
这里的 μ ( x , y ) \mu(x,y) μ(x,y)称为积分因子。一般说来,求积分因子并不是很容易的事,但对于一些简单的情况,可以通过观察凑出积分因子。
例2:求方程
y
d
x
−
x
d
y
+
y
2
x
d
x
=
0
ydx-xdy+y^2xdx=0
ydx−xdy+y2xdx=0
的通解。
解:容易验证,这不是全微分方程。但观察其前2项,可以发现,只要乘上因子
1
y
2
\frac{1}{y^2}
y21,它就是一个全微分
y
d
x
−
x
d
y
y
2
=
d
(
x
y
)
\frac{ydx-xdy}{y^2}=d(\frac{x}{y})
y2ydx−xdy=d(yx)
因此,取积分因子为
1
y
2
\frac{1}{y^2}
y21,将原方程改写为
y
d
x
−
x
d
y
y
2
+
x
d
x
=
0
\frac{ydx-xdy}{y^2}+xdx=0
y2ydx−xdy+xdx=0
这就是
d
(
x
y
)
+
d
(
x
2
2
)
=
0
d(\frac{x}{y})+d(\frac{x^2}{2})=0
d(yx)+d(2x2)=0
所以方程的通解为
x
y
+
x
2
2
=
C
\frac{x}{y}+\frac{x^2}{2}=C
yx+2x2=C
例3:求方程
(
2
x
x
2
+
y
2
+
x
)
d
x
+
(
x
2
+
y
2
+
y
)
d
y
=
0
(2x\sqrt{x^2+y^2}+x)dx+(\sqrt{x^2+y^2}+y)dy=0
(2xx2+y2+x)dx+(x2+y2+y)dy=0
的通解。
解:容易验证,这不是全微分方程。将方程改写为
x
d
x
+
y
d
y
+
x
2
+
y
2
(
2
x
d
x
+
d
y
)
=
0
xdx+ydy+\sqrt{x^2+y^2}(2xdx+dy)=0
xdx+ydy+x2+y2(2xdx+dy)=0
乘上积分因子
1
x
2
+
y
2
\frac{1}{\sqrt{x^2+y^2}}
x2+y21后,方程变为
x
d
x
+
y
d
y
x
2
+
y
2
+
2
x
d
x
+
d
y
=
0
\frac{xdx+ydy}{\sqrt{x^2+y^2}}+2xdx+dy=0
x2+y2xdx+ydy+2xdx+dy=0
即
d
(
x
2
+
y
2
)
+
d
(
x
2
+
y
)
=
d
[
x
2
+
y
2
+
(
x
2
+
y
)
]
=
0
d(\sqrt{x^2+y^2})+d(x^2+y)=d\left[\sqrt{x^2+y^2}+(x^2+y)\right]=0
d(x2+y2)+d(x2+y)=d[x2+y2+(x2+y)]=0
所以方程的通解为
x
2
+
y
2
+
x
2
+
y
=
C
\sqrt{x^2+y^2}+x^2+y=C
x2+y2+x2+y=C
从以上例子可以看出,我们利用了一些已知的二元函数的全微分来观察出积分因子。下面列出一些常用的二元函数的全微分,以备查阅:
d
(
x
y
)
=
y
d
x
+
x
d
y
d
(
x
y
)
=
y
d
x
−
x
d
y
y
2
d
(
x
2
+
y
2
)
=
x
d
x
+
y
d
y
x
2
+
y
2
d
(
l
n
(
x
2
+
y
2
)
)
=
2
⋅
x
d
x
+
y
d
y
x
2
+
y
2
d
(
a
r
c
t
a
n
x
y
)
=
y
d
x
−
x
d
y
x
2
+
y
2
d(xy)=ydx+xdy \\ d(\frac{x}{y})=\frac{ydx-xdy}{y^2} \\ d(\sqrt{x^2+y^2})=\frac{xdx+ydy}{\sqrt{x^2+y^2}} \\ d(ln(x^2+y^2))=2·\frac{xdx+ydy}{x^2+y^2} \\ d(arctan\frac{x}{y})=\frac{ydx-xdy}{x^2+y^2}
d(xy)=ydx+xdyd(yx)=y2ydx−xdyd(x2+y2)=x2+y2xdx+ydyd(ln(x2+y2))=2⋅x2+y2xdx+ydyd(arctanyx)=x2+y2ydx−xdy
2.线性方程
一阶线性常微分方程的一般形式为
d
y
d
x
+
f
(
x
)
y
=
g
(
x
)
\frac{dy}{dx}+f(x)y=g(x)
dxdy+f(x)y=g(x)
利用分离变量法,易知齐次线性方程
d
y
d
x
+
f
(
x
)
y
=
0
\frac{dy}{dx}+f(x)y=0
dxdy+f(x)y=0
的通解为
y
=
C
e
−
∫
f
(
x
)
d
x
y=Ce^{-\int f(x)dx}
y=Ce−∫f(x)dx
为了找非齐次线性方程的一个特解,我们利用常数变易法(实际上就是待定系数法,只是待定的“系数”是函数)。令
C
=
u
(
x
)
C=u(x)
C=u(x),将
y
=
u
(
x
)
e
−
∫
f
(
x
)
d
x
y=u(x)e^{-\int f(x)dx}
y=u(x)e−∫f(x)dx
代入方程
d
y
d
x
+
f
(
x
)
y
=
g
(
x
)
\frac{dy}{dx}+f(x)y=g(x)
dxdy+f(x)y=g(x),则有
[
u
′
(
x
)
e
−
∫
f
(
x
)
d
x
−
u
(
x
)
f
(
x
)
e
−
∫
f
(
x
)
d
x
]
+
u
(
x
)
f
(
x
)
e
−
∫
f
(
x
)
d
x
=
g
(
x
)
[u'(x)e^{-\int f(x)dx}-u(x)f(x)e^{-\int f(x)dx}]+u(x)f(x)e^{-\int f(x)dx}=g(x)
[u′(x)e−∫f(x)dx−u(x)f(x)e−∫f(x)dx]+u(x)f(x)e−∫f(x)dx=g(x)
即
u
′
(
x
)
=
g
(
x
)
e
∫
f
(
x
)
d
x
u'(x)=g(x)e^{\int f(x)dx}
u′(x)=g(x)e∫f(x)dx
因此可得
u
(
x
)
=
∫
g
(
x
)
e
∫
f
(
x
)
d
x
d
x
+
C
u(x)=\int g(x)e^{\int f(x)dx}dx+C
u(x)=∫g(x)e∫f(x)dxdx+C
于是,非齐次线性方程的通解为
y
=
(
∫
g
(
x
)
e
∫
f
(
x
)
d
x
d
x
+
C
)
e
−
∫
f
(
x
)
d
x
y=(\int g(x)e^{\int f(x)dx}dx+C)e^{-\int f(x)dx}
y=(∫g(x)e∫f(x)dxdx+C)e−∫f(x)dx
显然,齐次线性方程的解的线性组合仍是齐次线性方程的解。而且上式说明了,非齐次线性方程的通解等于该方程的一个特解加上齐次线性方程的通解,这与线性代数方程组的结论类似。
例1:解定解问题
{
x
d
y
d
x
+
y
−
e
x
=
0
y
∣
x
=
1
=
e
\begin{cases} x\frac{dy}{dx}+y-e^x=0 \\ y|_{x=1}=e \end{cases}
{xdxdy+y−ex=0y∣x=1=e
解:将方程化为
d
y
d
x
+
1
x
y
=
e
x
x
\frac{dy}{dx}+\frac{1}{x}y=\frac{e^x}{x}
dxdy+x1y=xex
此方程的通解为
y
=
e
−
∫
1
x
d
x
[
C
+
∫
e
x
x
e
∫
1
x
d
x
d
x
]
=
1
x
[
C
+
e
x
]
y=e^{-\int \frac{1}{x}dx}[C+\int\frac{e^x}{x}e^{\int\frac{1}{x}dx}dx]=\frac{1}{x}[C+e^x]
y=e−∫x1dx[C+∫xexe∫x1dxdx]=x1[C+ex]
3.Bernoulli方程
形如
d
y
d
x
+
f
(
x
)
y
=
g
(
x
)
y
n
\frac{dy}{dx}+f(x)y=g(x)y^n
dxdy+f(x)y=g(x)yn
的方程称为伯努力方程。当n=0和1时,就是线性方程。
当
n
≠
0
n\neq 0
n=0和1时,方程两端除以
y
n
y^n
yn,便得到
1
y
n
d
y
d
x
+
f
(
x
)
1
y
n
−
1
=
g
(
x
)
\frac{1}{y^n}\frac{dy}{dx}+f(x)\frac{1}{y^{n-1}}=g(x)
yn1dxdy+f(x)yn−11=g(x)
令
u
=
1
y
n
−
1
u=\frac{1}{y^{n-1}}
u=yn−11,则
d
u
=
(
1
−
n
)
1
y
n
d
y
du=(1-n)\frac{1}{y^n}dy
du=(1−n)yn1dy,于是方程变为
d
u
d
x
+
(
1
−
n
)
f
(
x
)
u
=
(
1
−
n
)
g
(
x
)
\frac{du}{dx}+(1-n)f(x)u=(1-n)g(x)
dxdu+(1−n)f(x)u=(1−n)g(x)
这是关于u的线性方程。按前面的方法解出方程后用
u
=
1
y
n
−
1
u=\frac{1}{y^{n-1}}
u=yn−11代入,就得到了原方程的解。
注意当 n > 0 n>0 n>0时,y=0是方程的解。
例:求方程
d
y
d
x
−
y
=
x
y
5
\frac{dy}{dx}-y=xy^5
dxdy−y=xy5
的通解。
解:方程两端除以
y
5
y^5
y5,便得到
1
y
5
d
y
d
x
−
1
y
4
=
x
\frac{1}{y^5}\frac{dy}{dx}-\frac{1}{y^4}=x
y51dxdy−y41=x
令
u
=
1
y
4
u=\frac{1}{y^4}
u=y41,方程变为
d
u
d
x
+
4
u
=
−
4
x
\frac{du}{dx}+4u=-4x
dxdu+4u=−4x
解得
u
=
1
y
4
=
C
e
−
4
x
−
x
+
1
4
u=\frac{1}{y^4}=Ce^{-4x}-x+\frac{1}{4}
u=y41=Ce−4x−x+41