组学数据分析实操系列 | (三)Metascape零代码解锁富集分析

前言

今天和大家分享一个功能非常强大的基因注释富集分析网站——Metascape,无需代码基础、无需注册,直接登录分析网站即可使用。Metascape使用了先进的技术,它的前端采用了Angular JavaScript框架,后台使用了MySQL数据库和Python编程语言。并且Metascape每月更新相关数据库四十多个,以确保提供最准确的结果。作为用户,我们只需要上传基因列表Metascape网站,就能快速获得丰富的基因注释富集分析结果。总之,Metascape是一个方便、快速且准确的基因注释分析网站。

图片

Metascape网站在2015年推出,在随后短短四年内它就获得了广泛的关注和应用,被超过4000篇文献引用,其中不乏Cell、Nature、Science级别的顶刊文章,并且这些文献中有超过一半直接使用了Metascape提供的分析结果图片

图片

图片

分析流程

01进入Metascape网站(https://metascape.org/gp/index.html#/main/step1

02导入数据,设定参数

在分析蛋白质组学数据时,一般根据差异倍数(如|Log2FC|≥1)及统计检验的P值(如P < 0.05)筛选得到差异蛋白列表。这时我们可以将差异蛋白ID(如UniProt登录号)或者对应的基因ID上传至Metascape网站。有两种上传的方式可供选择:一种是上传仅包含蛋白ID或基因ID的文档(Select File …)另一种是将蛋白ID或基因ID复制,然后粘贴至Metascape网站相应的框中。具体的格式可参考右侧Upload File Format中不同的文件格式。

Metascape还支持同时分析多个差异蛋白列表(Multiple Gene Lists),这样我们可以更清楚地了解不同比较组中差异蛋白的功能情况,更好地理解差异蛋白在不同生物学过程和通路中的作用。

图片

Step1:导入数据后,Step2:步骤需要选择分析所需的物种信息。根据分析需求,在Input as speciesAnalysis as species选择相应的物种。

图片

完成设定物种后,便可开始Step3注释富集分析了,可选择直接分析Express Analysis或个性化分析Custom Analysis。若选择Express Analysis,完成分析后,点击Step3Analysis Report Page查看结果。

图片

03个性化富集分析

上一步的Express Analysis进行的是直接富集分析,会结合多个数据库的信息(如Reactome、KEGG、Hallmark和GO数据库)进行分析,这种方法的最大优点是可以帮助用户综合分析差异蛋白在多个功能和通路上的富集情况,提供更全面的生物学解释。

如果只需要针对某个特定数据库进行富集分析,可以选择Custom Analysis进行个性化富集分析。点击Custom Analysis,跳转后包含四个功能模块,分别是ID Conversion(ID转换,识别导入的蛋白或基因ID及其所属物种)、Annotation(基因注释,提供不同数据库来源的基因注释信息)、Membership(从属分析,标记感兴趣的通路及基因)和Enrichment(基因富集分析)。

图片

以最常用的个性化富集分析Enrichment功能模块为例,可调整的关键参数如下图所示。若需要个性化背景基因,可点击红箭头处Change修改背景基因(对于定量蛋白质组学结果,通常选取本次研究检测到的所有蛋白);若更改红框中富集结果的筛选条件(如常用的P < 0.05等),可控制显著条目的数量;还可以选择不同的分析数据库来定制富集分析的类型(如GO、KEGG Pathway、Reactome等)。选择好相应参数后,点击Enrichment Analysis进行富集分析。

图片

图片

04富集分析结果的下载

对于直接分析结果的下载,可点击Analysis Report Page,跳转至新页面,页面上方出现Gene List Report Excel Sheets(基因注释及富集数据表格下载)、Gene List Report PPT file(基因富集分析、蛋白与蛋白相互作用关系分析结果展示图下载)和All in One Zip File(结果文件压缩包下载)。

图片

对于个性化分析,若需要下载所有结果,点击页面最上方Analysis Report Page,即可跳转至新页面下载对应文档。若只需要下载某个结果图,可以点击放大图片,点击左下角图标下载结果图。

图片

单个基因列表的富集分析结果示例如下,该图来源于2020年发表于Cell期刊的文章“Proteomic and Metabolomic Characterization of COVID-19 Patient Sera”。

图片

多基因列表的富集分析结果图示例如下。相对于单个基因列表,多基因列表富集分析提供了基因Circos图

图片

图片

以上就是Metascape网站在线富集分析的介绍,小伙伴如果有问题的话可以在公众号下留言哦!

参考文献

1. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun (2019).

2. Shen B, Yi X, Sun Y, et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell (2020).01.

### 如何解读 Metascape富集分析结果 Metascape 是一种强大的在线工具,能够整合来自多个生物信息数据库的知识库来执行基因和通路的富集分析[^3]。其主要目标是帮助研究人员更好地理解和解释验数据中的生物意义。 #### 结果的主要成部分 1. **功能分类(Functional Categories)** 功能分类部分展示了输入基因列表所涉及的不同类别,比如 GO 注释(分子功能、细胞成、生物过程)、KEGG 通路以及其他数据库的相关注释。每种分类通常会显示显著性 p 值以及调整后的 q 值,用于评估该类别的统计重要性和可靠性[^4]。 2. **气泡图(Bubble Plot)** 气泡图是一种常见的可视化方式,用来表示不同类别之间的关系及其重要程度。每个气泡代表一个具体的术语或路径,大小可能反映基因数量或者效应强度;颜色则常用来区分不同的子类别或 p/q 值范围。这种图形使得用户可以快速识别哪些领域具有较高的显著水平[^1]。 3. **网络图(Network Graphs)** 网络图通过节点连接的方式描绘了各个基因之间相互作用的关系网状结构。这不仅有助于观察单个基因的作用位置,还可以看出它们在整个信号传导过程中扮演的角色是否紧密相连形成模块化群。 4. **表格形式的结果总结** 表格提供了更详细的数值描述,包括但不限于以下字段: - Term Name: 描述具体的功能项名称; - Count/Overlap: 输入集中匹配此项目的基因数目; - P-value & Adjusted Q-value/FDR: 显示该项目相对于随机分布下的概率估计值及校正后的错误发现率; - Genes Involved: 列出了参与该项的所有基因名字[^2]。 #### 解读技巧 - 关注那些经过多重检验矫正后仍保持较低q值(<0.05)的项目,因为这意味着这些关联不太可能是偶然发生的。 - 对于特别感兴趣的某些特定方面(如某种疾病的已知标志物),可进一步筛选查看是否有对应条目出现并深入探讨其背后机理。 ```python import pandas as pd from matplotlib import pyplot as plt # 示例代码加载假定的metascape输出文件 df = pd.read_csv('metascape_results.csv') # 过滤出FDR<0.05的重要条目 filtered_df = df[df['Adjusted P Value'] < 0.05] # 可视化前几大重要的GO terms 或 KEGG pathways plt.figure(figsize=(8,6)) top_terms = filtered_df.nsmallest(10,'P value') plt.barh(top_terms['Term'], top_terms['Count']) plt.xlabel('Gene Count') plt.ylabel('Terms') plt.title('Top Enriched Terms from Metascape Analysis') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值