参数自整定技术是指驱动器通过特定算法和运行流程,将伺服系统中的电气设备如电机、电缆、电气接触件等的电气参数,以及转动惯量、负载力矩、摩擦力等机械参数进行辨识,并作为驱动器运行配置参数。
伺服驱动器参数自整定内容见表3-11。
表3-11伺服驱动器参数自整定
参数名称 | 标识 |
极对数 | Npp |
电感 | L |
电阻 | R |
反电势系数 | Ke |
力矩系数 | Kt |
电流环比例系数 | CurrKP |
电流环积分时间常数 | CurrTi |
电机零相位角 | AbsCal |
转子转动惯量 | Jrot |
负载转动惯量 | JLoad |
摩擦力 | BLoad |
速率环比例系数 | MovKP |
速率环积分时间常数 | MovTi |
位置环比例 | PosKP |
下面对参数自整定算法进行简要描述:
a) 绕组电阻R
当电机转子静止时,绕组中没有反电势,绕组电压方程如下:
(3-1)
控制器输出电压
为方波信号,具有高频交流量,导致相电流存在纹波,电流导数不为0,即
,所以电阻和电压不呈现线性关系
。
电机绕组在不同均值的方波驱动电压下(占空比接近极小值和极大值时除外),电流的纹波是相同的,所以可利用以下原理辨识出电机绕组电阻:IN UN Irip
(3-2)
用程序实现电阻辨识的基本原理如图3-10所示。
图3-10 电阻辨识原理
b) 电机绕组电感L
根据转子静止时的电压方程,可得到电流动态方程和传递函数如下:
动态方程:
(3-6)
传递函数:
(3-7)
电机绕组中电流对相电压的响应为一阶惯性环节,时间常数
。一阶惯性环节的阶跃响应曲线如图3-11所示:
图3-11 一阶惯性环节的阶跃响应曲线
c) 电机极对数和编码器位数自整定
电机极对数和编码器位数自整定方法如下:
控制电机工作在定子电压矢量旋转模式,电压矢量幅值为能产生额定电流对应的电压值;
在每个控制周期循环中,按照给定规律增加定子电压矢量角度,电机开始正向缓慢旋转,同时检测编码器数据;
当编码器数值第一次出现最大值到最小值的突变时,记录该最大值,根据该最大值计算出编码器位数,同时记录该时刻的参考电压矢量角;
d) 电机转子零相位角自整定
在自整定获取了电机电阻和电感参数、电流环参数后,电机转子零相位角自整定需,其流程如下:
控制电机工作在定子电流矢量旋转模式,电流矢量幅值为电机额定电流;
每个循环控制周期,按照给定规律增加定子电流矢量角,电机开始正向缓慢旋转,同时检测编码器数据;
当编码器数据出现最大值到最小值的突变时,记录该时刻的电流矢量角;
当转子旋转多圈后,每次编码器数据从最大值到最小值的突变均记录一次电流矢量角;
将记录的多组电流矢量角进行平均,再换算为对应的机械角度,即为电机转子的零相位角。
e) 反电势系数和力矩系数辨识
反电势系数和力矩系数辨识流程如下:
在使用参数自整定算法获取了电流环控制参数后,使电机在两相旋转d-q坐标系的电流环模式下工作;
根据b)得到的电压值和对应转速计算电机反电势系数;
根据电机反电势系数与力矩系数的特点关系,计算力矩系数。
f) 转动惯量辨识
电机在做加速运动和减速运动的时候,电磁转矩和负载的方向是不固定的。电机的机械运动方程如下:
此辨识方法成立的条件为:
负载转动惯量在线辨识的工作流程如下:
其中,
图3-12 电机电流环反电势耦合模型
为了提高电流环调节的快速性,电流环控制采用反电势解耦补偿,解耦控制框图如下图所示,图中右部蓝框内为反电势耦合项,左部分
、
为解耦项。解耦控制参数在软件中可通过电压前馈参数配置来调节。
图3-13 电流环解耦控制
2)电流环参数设计
电流环的设计主要依赖于电机本体参数,与负载的相关性较小,这是因为反电势的变化速度比电流的变化速度要慢得多。由于电机电阻和电感能够比较精确地获取,电流环调节器可采用零极点对消的方法,可以比较精确地对消电机电气极点,提高电流环响应速度。
零极点对消法可通过PI的形式实现,调节器的等效变换如下:
电流环参数自整定步骤如下:
1)首先选取控制模型开环传递函数的截止频率
(电流环截止频率)
2)求取截止频率处的相位裕度:
3)选取相位裕度
(一般设置为30°~70°),则有:
4)因此由以上两式可计算得到:
5)再根据截止频率定义得到结果