【故障诊断】基于Transformer、加入输入编码Transformer的轴承故障诊断信号分类研究[西储大学数据](Python代码实现)

          💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景

二、Transformer模型介绍

三、输入编码Transformer的应用

四、西储大学轴承数据集的应用

五、研究案例

六、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于Transformer的轴承故障诊断信号分类研究,特别是在结合输入编码Transformer的框架下,近年来已经成为一个热门的研究方向。西储大学(Case Western Reserve University,CWRU)的轴承数据集是这一领域研究中常用的基准数据集之一。以下是对该研究的详细分析:

一、研究背景

滚动轴承是工业设备中的关键部件,其运行状态直接影响设备的整体性能和安全性。因此,轴承故障的早期识别与诊断对于保障生产效率和预防重大事故具有重要意义。传统的故障诊断方法往往依赖于人工经验和信号处理技术,但这些方法在复杂多变的工业环境中往往效果不佳。随着深度学习技术的飞速发展,基于神经网络的方法逐渐展现出强大的特征提取和故障识别能力。

二、Transformer模型介绍

Transformer模型最初在自然语言处理领域取得了巨大成功,其强大的时序特征提取能力使得它成为处理序列数据的理想选择。在轴承故障诊断中,Transformer模型可以有效地捕捉振动信号中的长期依赖关系,从而提取出故障特征。

三、输入编码Transformer的应用

在基于Transformer的轴承故障诊断中,输入编码是一个关键环节。通过将原始振动信号转换为Transformer模型能够处理的输入格式,可以充分利用Transformer模型的时序特征提取能力。输入编码通常包括以下几个步骤:

  1. 信号预处理:对原始振动信号进行去噪、滤波和归一化等操作,以提高信号质量。
  2. 信号分割:将预处理后的振动信号分割成多个子序列,每个子序列作为Transformer模型的一个输入。
  3. 嵌入表示:将每个子序列映射到高维嵌入空间,以生成用于Transformer模型输入的嵌入向量。

四、西储大学轴承数据集的应用

西储大学轴承数据集是轴承故障诊断领域常用的基准数据集之一。该数据集包含了多种工况下的轴承振动信号,以及对应的故障类别标签。基于该数据集,可以开展以下研究:

  1. 模型训练与验证:使用西储大学轴承数据集训练基于Transformer的故障诊断模型,并通过交叉验证等方法评估模型的性能。
  2. 特征提取与分析:利用Transformer模型提取振动信号中的故障特征,并通过可视化等方法分析这些特征在故障诊断中的作用。
  3. 故障诊断与预测:将训练好的模型应用于新的振动信号,实现轴承故障的实时诊断与预测。

五、研究案例

有研究提出了一种基于振动信号Transformer神经网络(VSTNN)的滚动轴承故障诊断方法。该方法结合了Transformer编码器的多头注意力机制和残差连接的优点,在特征空间中聚合不同时间序列的振动信息,从而提高了长期依赖建模的性能。此外,该方法还采用了一种新的振动信号标记化策略,通过结合从一维振动数据、类标记和位置嵌入中学习到的多个子序列特征来生成标记嵌入序列。实验结果表明,该方法在西储大学轴承数据集上取得了较高的诊断准确率。

六、未来展望

随着深度学习技术的不断发展,基于Transformer的轴承故障诊断方法将不断完善和拓展。未来的研究方向可能包括:

  1. 多特征融合:结合时域、频域和其他特征信息,提高故障诊断的准确性和效率。
  2. 轻量化模型设计:在保证性能的前提下,设计更轻量化的Transformer模型,以适应嵌入式设备等资源受限的应用场景。
  3. 无监督学习:探索无监督学习方法在轴承故障诊断中的应用,以实现更智能化的故障诊断和预测。

综上所述,基于Transformer、加入输入编码的轴承故障诊断信号分类研究具有广阔的应用前景和重要的研究价值。通过不断优化模型结构和提高性能,可以为工业设备的智能化维护提供有力支持。

📚2 运行结果

Transformer:

 加入输入编码Transformer:

 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

 [1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值