💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文章:
基于S变换和卷积神经网络的滚动轴承故障诊断研究综述
一、S变换的核心原理及其在信号处理中的优势
S变换(Stockwell Transform)是Stockwell于1996年提出的时频分析方法,结合了短时傅立叶变换(STFT)和连续小波变换(CWT)的优势,适用于非平稳信号的时频局部化分析。其数学定义为:
核心特性:
- 自适应高斯窗函数:窗宽随频率反比例变化,低频时窗宽大(高频率分辨率),高频时窗宽小(高时间分辨率)。
- 相位校正能力:相比小波变换,S变换通过相位因子保留了信号的相位信息,更适合分析调制信号。
- 无逆变换损失:信号可通过反变换无损还原,保证特征提取的完整性。
在滚动轴承故障诊断中,S变换可将振动信号转换为时频图(Time-Frequency Image),直观展示故障冲击的时频分布特征,例如主频段、边带频率等。例如,文献中通过对微震信号进行S变换,成功提取了振幅和频率参数,用于识别滚动轴承的剥落故障。
二、卷积神经网络(CNN)在故障诊断中的核心作用
CNN是一种深度学习模型,通过卷积层、池化层和全连接层实现特征自动提取与分类,其优势包括:
- 局部感知与参数共享:减少参数数量,提高计算效率。
- 多层次特征提取:浅层捕捉局部特征(如边缘、纹理),深层提取抽象特征(如故障模式)。
- 端到端学习:直接从原始数据(时频图或信号)中学习,避免人工特征设计的局限性。
典型应用场景:
- 图像输入:将振动信号通过S变换、小波变换等转换为二维时频图,作为CNN输入。
- 一维信号直接处理:部分研究直接将一维振动信号输入1D-CNN,适用于实时监测场景。
- 多传感器融合:结合振动、电流等多源信号,通过CNN融合多模态特征,提升诊断鲁棒性。
三、S变换与CNN结合的技术可行性分析
1. 互补性优势
- S变换:解决振动信号的非平稳性和噪声干扰问题,提供高分辨率的时频特征。
- CNN:自动挖掘时频图中的深层故障模式,替代传统分类器(如SVM)的复杂特征工程。
2. 典型技术路线
- 信号预处理:对原始振动信号进行去噪(如MED滤波),增强故障冲击成分。
- 时频图生成:通过S变换生成灰度或彩色时频图(如时频幅值矩阵)。
- CNN模型设计:常用结构包括:
- 基础CNN:3-5层卷积+池化层,末端连接全连接层进行分类。
- 改进架构:引入残差模块(ResNet)、注意力机制(如多头自注意力)或多尺度卷积(MSCNN)提升特征表达能力。
- 性能优化:采用数据增强(如添加噪声)、迁移学习或量子遗传算法(QGA)优化超参数。
3. 实验设计与性能指标
- 数据集:常用凯斯西储大学(CWRU)轴承数据集,涵盖内圈、外圈、滚动体故障及正常状态,样本量通常为10,000-20,000。
- 数据划分:训练集与测试集比例多为8:2或7:3,部分研究采用交叉验证。
- 评价指标:
- 准确率:主流方法可达95%-99.8%。
- 鲁棒性:在噪声干扰(如30-40 dB)或变工况下保持较高诊断精度。
- 收敛速度:通过优化学习率(如0.005)和批量大小加速训练。
四、现有研究案例与技术突破
-
基础结合模型(S变换+CNN):
- 王庆荣等(2021)将S变换时频图输入CNN,在CWRU数据集上实现99.7%的准确率,显著高于传统SVM(83.7%)和LSTM(84.3%)。
- Zhang等(2021)提出VMD-GST预处理结合AMCNN,平均准确率达99.76%,优于单一CNN或S变换方法。
-
改进架构:
- 多头自注意力机制:ST-CNN-MSA模型通过全局建模时频特征,准确率提升至99.5%。
- 多尺度学习:MBCNN模型采用不同卷积核提取多尺度特征,在变转速条件下准确率提高12%-18%。
- 动态优化:基于QGA优化广义S变换参数,提升特征提取的鲁棒性。
-
跨领域应用:
- 在电力系统中,S变换+CNN方法对电压暂降源的识别准确率提高36.92%。
- 工业机器人RV减速器故障诊断中,2D-CNN结合S变换时频图,分类精度达98.7%。
五、技术挑战与未来方向
-
现存问题:
- 数据依赖性:模型对训练数据分布敏感,跨工况或新故障类型识别能力有限。
- 计算复杂度:S变换和深层CNN的联合计算对硬件要求较高,难以部署于边缘设备。
- 解释性不足:CNN的“黑箱”特性导致故障机理关联性分析困难。
-
未来研究方向:
- 轻量化模型:开发压缩版CNN(如MobileNet)或知识蒸馏技术,降低计算成本。
- 迁移学习与增量学习:利用预训练模型适应新故障类型,减少数据标注需求。
- 多物理场融合:结合声发射、温度等多传感器数据,构建更全面的故障诊断系统。
六、结论
基于S变换和CNN的滚动轴承故障诊断方法,通过时频分析与深度学习的深度融合,显著提升了非平稳信号下的故障识别精度(普遍超过95%)。其核心价值在于:
- 特征提取自动化:摆脱传统方法对专家经验的依赖。
- 高鲁棒性:在噪声、变负载等复杂工况下保持稳定性能。
- 技术扩展性:可结合注意力机制、多尺度分析等进一步提升诊断能力。
未来需在模型轻量化、跨域适应性和可解释性方面深化研究,推动该方法在工业现场的规模化应用。
📚2 运行结果
2.1 S变换时频图
西储:
江南:
2.2 CNN分类结果
2.3 CNN-LSTM分类结果
2.4 CNN-SVM分类结果
2.5 CNN-BiGRU分类结果
2.6 ResNet分类结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、数据、文章
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取