【论文复现】【江南大学大学数据】基于S变换和卷积神经网络的滚动轴承故障诊断研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于S变换和卷积神经网络的滚动轴承故障诊断研究综述

一、S变换的核心原理及其在信号处理中的优势

二、卷积神经网络(CNN)在故障诊断中的核心作用

三、S变换与CNN结合的技术可行性分析

1. 互补性优势

2. 典型技术路线

3. 实验设计与性能指标

四、现有研究案例与技术突破

五、技术挑战与未来方向

六、结论

📚2 运行结果

2.1 S变换时频图

2.2 CNN分类结果

2.3 CNN-LSTM分类结果

2.4 CNN-SVM分类结果

2.5 CNN-BiGRU分类结果

2.6 ResNet分类结果

🎉3 参考文献 

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

文章:

基于S变换和卷积神经网络的滚动轴承故障诊断研究综述

一、S变换的核心原理及其在信号处理中的优势

S变换(Stockwell Transform)是Stockwell于1996年提出的时频分析方法,结合了短时傅立叶变换(STFT)和连续小波变换(CWT)的优势,适用于非平稳信号的时频局部化分析。其数学定义为:

核心特性

  1. 自适应高斯窗函数:窗宽随频率反比例变化,低频时窗宽大(高频率分辨率),高频时窗宽小(高时间分辨率)。
  2. 相位校正能力:相比小波变换,S变换通过相位因子保留了信号的相位信息,更适合分析调制信号。
  3. 无逆变换损失:信号可通过反变换无损还原,保证特征提取的完整性。

在滚动轴承故障诊断中,S变换可将振动信号转换为时频图(Time-Frequency Image),直观展示故障冲击的时频分布特征,例如主频段、边带频率等。例如,文献中通过对微震信号进行S变换,成功提取了振幅和频率参数,用于识别滚动轴承的剥落故障。


二、卷积神经网络(CNN)在故障诊断中的核心作用

CNN是一种深度学习模型,通过卷积层、池化层和全连接层实现特征自动提取与分类,其优势包括:

  1. 局部感知与参数共享:减少参数数量,提高计算效率。
  2. 多层次特征提取:浅层捕捉局部特征(如边缘、纹理),深层提取抽象特征(如故障模式)。
  3. 端到端学习:直接从原始数据(时频图或信号)中学习,避免人工特征设计的局限性。

典型应用场景

  • 图像输入:将振动信号通过S变换、小波变换等转换为二维时频图,作为CNN输入。
  • 一维信号直接处理:部分研究直接将一维振动信号输入1D-CNN,适用于实时监测场景。
  • 多传感器融合:结合振动、电流等多源信号,通过CNN融合多模态特征,提升诊断鲁棒性。

三、S变换与CNN结合的技术可行性分析
1. 互补性优势
  • S变换:解决振动信号的非平稳性和噪声干扰问题,提供高分辨率的时频特征。
  • CNN:自动挖掘时频图中的深层故障模式,替代传统分类器(如SVM)的复杂特征工程。
2. 典型技术路线
  1. 信号预处理:对原始振动信号进行去噪(如MED滤波),增强故障冲击成分。
  2. 时频图生成:通过S变换生成灰度或彩色时频图(如时频幅值矩阵)。
  3. CNN模型设计:常用结构包括:
    • 基础CNN:3-5层卷积+池化层,末端连接全连接层进行分类。
    • 改进架构:引入残差模块(ResNet)、注意力机制(如多头自注意力)或多尺度卷积(MSCNN)提升特征表达能力。
  4. 性能优化:采用数据增强(如添加噪声)、迁移学习或量子遗传算法(QGA)优化超参数。
3. 实验设计与性能指标
  • 数据集:常用凯斯西储大学(CWRU)轴承数据集,涵盖内圈、外圈、滚动体故障及正常状态,样本量通常为10,000-20,000。
  • 数据划分:训练集与测试集比例多为8:2或7:3,部分研究采用交叉验证。
  • 评价指标
    • 准确率:主流方法可达95%-99.8%。
    • 鲁棒性:在噪声干扰(如30-40 dB)或变工况下保持较高诊断精度。
    • 收敛速度:通过优化学习率(如0.005)和批量大小加速训练。

四、现有研究案例与技术突破
  1. 基础结合模型(S变换+CNN):

    • 王庆荣等(2021)将S变换时频图输入CNN,在CWRU数据集上实现99.7%的准确率,显著高于传统SVM(83.7%)和LSTM(84.3%)。
    • Zhang等(2021)提出VMD-GST预处理结合AMCNN,平均准确率达99.76%,优于单一CNN或S变换方法。
  2. 改进架构

    • 多头自注意力机制:ST-CNN-MSA模型通过全局建模时频特征,准确率提升至99.5%。
    • 多尺度学习:MBCNN模型采用不同卷积核提取多尺度特征,在变转速条件下准确率提高12%-18%。
    • 动态优化:基于QGA优化广义S变换参数,提升特征提取的鲁棒性。
  3. 跨领域应用

    • 在电力系统中,S变换+CNN方法对电压暂降源的识别准确率提高36.92%。
    • 工业机器人RV减速器故障诊断中,2D-CNN结合S变换时频图,分类精度达98.7%。

五、技术挑战与未来方向
  1. 现存问题

    • 数据依赖性:模型对训练数据分布敏感,跨工况或新故障类型识别能力有限。
    • 计算复杂度:S变换和深层CNN的联合计算对硬件要求较高,难以部署于边缘设备。
    • 解释性不足:CNN的“黑箱”特性导致故障机理关联性分析困难。
  2. 未来研究方向

    • 轻量化模型:开发压缩版CNN(如MobileNet)或知识蒸馏技术,降低计算成本。
    • 迁移学习与增量学习:利用预训练模型适应新故障类型,减少数据标注需求。
    • 多物理场融合:结合声发射、温度等多传感器数据,构建更全面的故障诊断系统。

六、结论

基于S变换和CNN的滚动轴承故障诊断方法,通过时频分析与深度学习的深度融合,显著提升了非平稳信号下的故障识别精度(普遍超过95%)。其核心价值在于:

  1. 特征提取自动化:摆脱传统方法对专家经验的依赖。
  2. 高鲁棒性:在噪声、变负载等复杂工况下保持稳定性能。
  3. 技术扩展性:可结合注意力机制、多尺度分析等进一步提升诊断能力。

未来需在模型轻量化、跨域适应性和可解释性方面深化研究,推动该方法在工业现场的规模化应用。

📚2 运行结果

2.1 S变换时频图

西储:

江南:

2.2 CNN分类结果

2.3 CNN-LSTM分类结果

2.4 CNN-SVM分类结果

2.5 CNN-BiGRU分类结果

2.6 ResNet分类结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值