💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
无线充电车辆路线和速度预测:基于随机搜索优化的联合模型研究
无线可充电传感器网络在无线传感器网络的基础上集成了无线充电功能, 通过无线能量传(WPT)为传感器节点传输无线射频(RF)能量[17] 。相对于其他 WSNs 电量研究,无线充电技术能够保证充电的及时性,使得传感器节点持久、正常地工作,从而得到更高质量的网络服务。无线可充电传感器网络主要由两部分组成,分别为传感器节点和无线充电节点(WSN)。传感器节点与由电池供电的传统传感器节点不同,可以收集来自无线充电器的射频能量。无线充电节点通 常为静态的充电节点或者移动充电车,充电节点可以存储较多的能量,发射微波为传感器节点充电 。
本文包括:
1.系统模型
a.节点初始化和分配接收器节点
b.初始化车辆及其覆盖范围 范围和速度
2.优化了具有约束的布线长度
3.使用时间和空间关系的最佳速度
4.绘制输出
一、无线充电车辆的技术特点与路径规划挑战
无线充电技术分为静态(SWPT)和动态(DWPT)两种类型。动态无线充电允许车辆在行驶中通过埋设充电线圈的道路进行充电,理论上可实现无限续航。其核心优势包括:
- 无感充电:无需停车,提升出行连续性;
- 降低电池容量需求:通过持续充电减少车载电池体积与成本;
- 与智能交通系统融合:支持自动驾驶车辆的能源管理。
路径规划的特殊性:动态充电车辆的路线需优先覆盖充电车道(DWC Lanes),同时速度需与充电功率匹配以优化能量输入。例如,低速行驶可能延长充电时间但提高充电效率,而高速行驶可能减少行程时间但降低能量捕获效率。
二、传统路径与速度预测方法的局限性
传统方法主要依赖物理模型(如恒定速度模型)或统计回归,但存在以下问题:
- 静态假设:无法动态响应充电设施的分布变化;
- 解耦优化:路径与速度分开优化,忽视两者的耦合关系;
- 高维非线性问题:充电效率、交通流量、能耗等多变量交互导致传统算法难以收敛。
三、随机搜索优化方法的优势与适配性
遗传算法(GA)与模拟退火(SA) 等随机搜索方法因其全局搜索能力和对多目标优化的适应性,成为联合模型的理想选择:
- 全局寻优:通过种群迭代或概率跳变避免局部最优;
- 多目标处理:可同时优化时间成本、能耗、充电效率等目标;
- 并行计算:适用于大规模交通网络的实时调度。
典型应用案例:
- 交通信号优化:GA用于调整绿灯时长与周期,减少车辆延误;
- 动态路径诱导:SA优化充电车道选择与速度分配,降低系统总成本。
四、联合优化模型构建框架
1. 模型目标函数
联合优化模型需整合以下目标:
- 最小化总行程时间:路径长度与速度的函数;
- 最大化充电效率:速度与充电功率的匹配度(如公式:Echarge=P(v)⋅tdwc,其中P(v)为速度相关充电功率);
- 平衡能耗与电池损耗:考虑加速/减速的能耗成本。
2. 约束条件
- 充电设施覆盖:路径必须包含一定比例的充电车道;
- 速度限制:道路限速与充电效率最优速度区间;
- 电池容量:SOC(State of Charge)动态约束。
3. 随机搜索算法设计(以遗传算法为例)
- 编码方式:采用混合编码(路径节点+速度序列);
- 适应度函数:加权多目标
;
- 交叉与变异操作:
- 路径部分:顺序交叉(OX)避免重复节点;
- 速度部分:高斯扰动调整速度值。
五、案例分析与算法改进策略
案例1:动态充电车道优化
模型特征:在高速公路场景中,GA用于选择充电车道布局,SA优化车辆速度曲线。结果表明,结合LRP(位置-路线问题)可减少45%的充电设施总成本。
案例2:城市物流车辆调度
混合算法设计:GA生成初始路径,SA进行局部速度优化。通过引入道路容量衰减系数(反映充电车道对交通流的影响),系统总延误降低17%。
改进策略:
- 分层优化:先固定路径优化速度,再反向调整路径;
- 动态参数调整:根据实时交通数据更新算法参数(如变异概率);
- 集成机器学习:用LSTM预测充电需求,缩小搜索空间。
六、未来研究方向
- 实时动态优化:结合边缘计算实现毫秒级响应;
- 多车协同调度:考虑车辆间充电资源的竞争与共享;
- 基础设施-车辆双向通信:充电功率动态调整(如根据车流密度提升功率)。
结论
随机搜索优化方法为解决无线充电车辆的联合路径-速度问题提供了高效工具。通过多目标建模与算法创新,可显著提升能源利用效率与交通系统可持续性。未来需进一步探索异构交通流下的鲁棒性优化与大规模路网的可扩展性。
📚2 运行结果
部分代码:
function [x,v] = randfixedsum(n,m,s,a,b)
% [x,v] = randfixedsum(n,m,s,a,b)
%
if (m~=round(m))|(n~=round(n))|(m<0)|(n<1)
error('n must be a whole number and m a non-negative integer.')
elseif (s<n*a)|(s>n*b)|(a>=b)
error('Inequalities n*a <= s <= n*b and a < b must hold.')
end
% Rescale to a unit cube: 0 <= x(i) <= 1
s = (s-n*a)/(b-a);
% Construct the transition probability table, t.
% t(i,j) will be utilized only in the region where j <= i + 1.
k = max(min(floor(s),n-1),0); % Must have 0 <= k <= n-1
s = max(min(s,k+1),k); % Must have k <= s <= k+1
s1 = s - [k:-1:k-n+1]; % s1 & s2 will never be negative
s2 = [k+n:-1:k+1] - s;
w = zeros(n,n+1); w(1,2) = realmax; % Scale for full 'double' range
t = zeros(n-1,n);
tiny = 2^(-1074); % The smallest positive matlab 'double' no.
for i = 2:n
tmp1 = w(i-1,2:i+1).*s1(1:i)/i;
tmp2 = w(i-1,1:i).*s2(n-i+1:n)/i;
w(i,2:i+1) = tmp1 + tmp2;
tmp3 = w(i,2:i+1) + tiny; % In case tmp1 & tmp2 are both 0,
tmp4 = (s2(n-i+1:n) > s1(1:i)); % then t is 0 on left & 1 on right
t(i-1,1:i) = (tmp2./tmp3).*tmp4 + (1-tmp1./tmp3).*(~tmp4);
end
% Derive the polytope volume v from the appropriate
% element in the bottom row of w.
v = n^(3/2)*(w(n,k+2)/realmax)*(b-a)^(n-1);
% Now compute the matrix x.
x = zeros(n,m);
if m == 0, return, end % If m is zero, quit with x = []
rt = rand(n-1,m); % For random selection of simplex type
rs = rand(n-1,m); % For random location within a simplex
s = repmat(s,1,m);
j = repmat(k+1,1,m); % For indexing in the t table
sm = zeros(1,m); pr = ones(1,m); % Start with sum zero & product 1
for i = n-1:-1:1 % Work backwards in the t table
e = (rt(n-i,:)<=t(i,j)); % Use rt to choose a transition
sx = rs(n-i,:).^(1/i); % Use rs to compute next simplex coord.
sm = sm + (1-sx).*pr.*s/(i+1); % Update sum
pr = sx.*pr; % Update product
x(n-i,:) = sm + pr.*e; % Calculate x using simplex coords.
s = s - e; j = j - e; % Transition adjustment
end
x(n,:) = sm + pr.*s; % Compute the last x
% Randomly permute the order in the columns of x and rescale.
rp = rand(n,m); % Use rp to carry out a matrix 'randperm'
[ig,p] = sort(rp); % The values placed in ig are ignored
x = (b-a)*x(p+repmat([0:n:n*(m-1)],n,1))+a; % Permute & rescale x
return
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]杨梦. 无线可充电传感器网络中充电节点的部署优化研究[D].吉林大学,2019.
[2]陆帅帅. 无线可充电传感器网络的充电策略研究[D].北京邮电大学,2020.DOI:10.26969/d.cnki.gbydu.2020.000359.
[3]郭翔宇. 无线传感器网络能量补充策略研究[D].华北电力大学(北京),2020.DOI:10.27140/d.cnki.ghbbu.2020.000340.
[4]陈刚. 无线充电模式下城市电动公交充电设施选址与线网优化问题研究[D].长安大学,2021.DOI:10.26976/d.cnki.gchau.2021.000034.