GWAS关联分析教程

GWAS全基因组关联分析

写在前面

有很多人都在利用GWAS开展研究工作,本文从简介、原理、方法、操作步骤等方面进行介绍,分享关于GWAS的一些必备知识。

GWAS:Genome Wide Association Study,即全基因组关联分析,是一种常用于研究作物遗传育种领域的方法。通过GWAS可以探究基因与表型(性状)之间的关联,帮助我们了解作物性状的遗传基础,从而加速作物育种的进程。


GWAS原理简介

GWAS的基本原理是比较不同个体(例如不同作物品种)的基因组,找出与感兴趣性状相关的遗传变异。这些遗传变异通常是单核苷酸多态性(SNP),即DNA序列中的单个碱基差异。

在GWAS中对大规模样本进行基因组测序或SNP芯片分析,然后将基因型数据与性状表型数据进行关联分析。

GWAS操作步骤

  1. 收集样本与数据准备

收集包含感兴趣性状表型数据的作物样本,同时获取这些样本的基因组DNA序列数据或SNP芯片数据。

  1. 数据预处理

对基因组数据进行质控,包括去除低质量的SNP位点和个体,确保数据的准确性和一致性。

  1. 关联分析

使用统计学方法对基因型数据和性状数据进行关联分析。常用的关联方法包括线性回归模型和混合模型等。这些方法能够帮助我们找出基因型与性状之间的相关性。

  1. 校正群体结构与相关性

由于不同作物品种之间可能存在种族结构和亲缘关系,可能导致误报的关联结果。因此,在分析中需要进行种族结构校正和亲缘关系校正,以消除这些干扰因素。

  1. 多重检验校正

由于GWAS中进行了大量的统计检验(通常针对数以百万计的SNP位点),需要进行多重检验校正来控制假阳性率。常见的多重检验校正方法包括Bonferroni校正、FDR(False Discovery Rate)校正等。

  1. 结果解释与功能注释

通过GWAS可以得到与性状相关的SNP位点信息,但这些位点通常只是与性状关联,并不直接说明功能。因此,需要进一步进行功能注释,例如查找位点是否位于已知的功能基因区域、转录因子结合位点等,从而理解这些位点对性状的调控机制。

  1. 验证与应用

在GWAS分析的基础上,进行进一步的验证实验,例如克隆与验证候选基因,或者进行遗传改良。

最终,将这些结果应用于实践中,以提高作物的产量、抗性、品质等性状。

具体分析过程与方法

  1. 安装PLINK:
# 安装PLINK
# 参考PLINK官方网站:https://www.cog-genomics.org/plink/2.0/
  1. 数据预处理:
# 将基因型数据文件转换为PLINK格式
plink --bfile input_data --make-bed --out output_data

# 数据清洗:移除低质量的SNP和个体
plink --bfile cleaned_data --geno 0.1 --mind 0.1 --make-bed --out final_data
  1. 关联分析:
# 进行GWAS关联分析,使用线性回归模型
plink --bfile final_data --linear --pheno phenotype_file --covar covariate_file --out gwas_results
  1. 多重比较校正:
# 使用Bonferroni校正
plink --bfile final_data --adjust --out gwas_results_bonferroni
# 使用FDR校正
plink --bfile final_data --adjust --out gwas_results_fdr --adjust-method fdr

本文由mdnice多平台发布

GWAS meta分析是一种将多个基因组关联研究结果进行综合分析的方法,以下是一个Python脚本的例子,用于进行GWAS meta分析: ```python import pandas as pd import numpy as np import statsmodels.api as sm # 读取所有研究的GWAS结果文件 study1 = pd.read_csv("study1.csv") study2 = pd.read_csv("study2.csv") study3 = pd.read_csv("study3.csv") # 将每个研究的p值进行变换,转化为z值 study1["z"] = np.sqrt(2) * sm.stats.proportion.proportions_ztest(study1["n_cases"], study1["n_total"], value=study1["OR"])[0] study2["z"] = np.sqrt(2) * sm.stats.proportion.proportions_ztest(study2["n_cases"], study2["n_total"], value=study2["OR"])[0] study3["z"] = np.sqrt(2) * sm.stats.proportion.proportions_ztest(study3["n_cases"], study3["n_total"], value=study3["OR"])[0] # 将每个研究的z值和样本量进行合并 meta_data = pd.concat([study1[["SNP", "z", "n_cases", "n_total"]], study2[["SNP", "z", "n_cases", "n_total"]], study3[["SNP", "z", "n_cases", "n_total"]]]) # 计算每个SNP的z值和加权样本量 meta_data["wz"] = meta_data["z"] * np.sqrt(meta_data["n_cases"] + meta_data["n_controls"]) meta_data["w"] = np.sqrt(meta_data["n_cases"] + meta_data["n_controls"]) # 计算meta分析的z值和p值 meta_z = meta_data["wz"].sum() / meta_data["w"].sum() meta_p = 2 * (1 - sm.stats.norm.cdf(abs(meta_z))) # 输出meta分析结果 print("Meta-analysis result:") print("z value: ", meta_z) print("p value: ", meta_p) ``` 这个脚本首先读取每个研究的GWAS结果文件,将每个研究的p值转化为z值,然后将每个研究的z值和样本量进行合并,计算每个SNP的加权z值和加权样本量,最后计算meta分析的z值和p值,输出结果。需要注意的是,不同研究的样本量、OR值等参数可能存在差异,需要根据具体情况进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信分析笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值