1、预备知识
(1)典型I型系统的传递函数如下图所示:
(2)通常情况下,一个实际系统可以通过工程上的近似处理和调节器校正变换成 典型I(前面已讲) 或 典型 II 系统。
本节用到的工程上近似处理方法:小惯性群的近似处理,自动控制系统中有多个小时间常数的惯性环节相串联的情况,在一定条件下可以将这些小惯性环节合并为一个惯性环节。
调节器结构选择的基本思路:将控制对象校正成典型I或者典型II系统。
2、电流环PI参数整定
2.1、电流环的开环传递函数

上图为电流环传递函数框图,电流环的输入为电流信号的误差值,输出为电压,控制电机转矩。
第一个环节: PI调节器的传函
第二个环节:延迟传函
在实际计算过程中,CPU进入中断读取电流反馈值,然后进行PI调节器的计算,得到输出电压(或者三角波比较值),但是输出电压或者比较值不是立即作用出去的,通常会延迟一个PWM周期,才会将比较值输出出去。这样就造成了采样和计算的延迟,这里近似看成一阶延迟环节,时间常数为Ts(这里td=Ts)。
第三个环节: 逆变器的传函
经过第二个环节,更新了三角波的比较值后,输出的电压是立刻作用到了负载上面吗?还不是的。对于7段式SVPWM来说,调制特点决定了还有0.5Ts的延时。而Kpwm为逆变器的增益,这个值没有一个确定的数值,这里取Kpwm为1,默认他为理想型。
第四个环节: 电机传递函数
电机传递函数可近似处理为:
说下电机传函的由来,前面讲过电机在dq轴坐标系下的电压方程:
忽略耦合项的电压平衡方程为(这里只列出q轴电压方程):
上式拉式变换后得到电机的传函。
在开关频率为10KHZ时,PWM逆变器和延迟环节的时间常数都很小。工程近似就可以把延迟环节和PWM环节合并处理:
因为时间常数Ts很小,那么分母中的二次项系数可以看做0,从而等效为一个典型的I型系统。
则可得电流传递函数框图:
则电流环的开环传函数:
2.2 、电流环参数整定
前面我们得到了电流环的开环传递函数,下面我们把开环传递函数配置成典型系统:
2.2.1、I型系统配置
I型系统开环传递函数的结构是:
Wcur(s)貌似又和I型系统的结构不一样。怎么处理? 采用零极点对消法 ,将参数设置满足
Kp/Ki=Lq/R 这个条件,让分子分母各自约去一项,就能将电流环变成了I型系统。
剩下的Wcur(s)中,分子Ki/R就是I型系统的分子K,分母中的1.5Ts就是I型系统的T。即:
当具有较高的开关频率时,Ts的取值够小,可忽略不计。则系统变为一阶环节:
(1)电流环按=0.707整定时,带入上式,故:
其中Ts为PI调节器计算的周期,一般情况下等同于逆变器的开关周期。
(2)电流环按=1整定时,带入上式,故:
以上电机模型是通过uq算的,也可以通过ud算,此时得到的增益即为d轴的增益:
典型I型系统跟随性能指标和频域指标与参数的关系如下表所示:
参考:
1.https://blog.csdn.net/sy243772901/article/details/82221672