intel realsense计算指定像素真实深度与像素坐标系转相机坐标系

intel realsense深度转真实距离与像素坐标系转相机坐标系

1. 深度转真实距离

1. 1初始化配置
import pyrealsense2 as rs
# 相机配置
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, WIDTH, HEIGHT, rs.format.z16, 60)
config.enable_stream(rs.stream.color, WIDTH, HEIGHT, rs.format.rgb8, 60)

profile = pipeline.start(config)
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
# 获取相机内参
intr = color_frame.profile.as_video_stream_profile().intrinsics
camera_parameters = {'fx': intr.fx, 'fy': intr.fy,
                     'ppx': intr.ppx, 'ppy': intr.ppy,
                     'height': intr.height, 'width': intr.width,
                     'depth_scale': profile.get_device().first_depth_sensor().get_depth_scale()
                     }
# 保存内参到本地
with open('./intrinsics.json', 'w') as fp:
    json.dump(camera_parameters, fp)
# 图像对齐
align_to = rs.stream.color
align = rs.align(align_to)
1.2 获取图像
  • depth_intrin 在下一步坐标系转换用到
frames = pipeline.wait_for_frames()
aligned_frames = align.process(frames)

aligned_depth_frame = aligned_frames.get_depth_frame()
# 深度参数,像素坐标系转相机坐标系用到
depth_intrin = aligned_depth_frame.profile.as_video_stream_profile().intrinsics
color_frame = aligned_frames.get_color_frame()

# 深度图
d = np.asanyarray(aligned_depth_frame.get_data())
# 彩色图
image_np = np.asanyarray(color_frame.get_data())
# 输入像素的x和y计算真实距离
dis = aligned_depth_frame.get_distance(x, y)

2. 像素坐标系转相机坐标系

  • depth_intrin 从上一步获取
  • x 像素点的x
  • y 像素点的y
  • dis 上一步计算的真实距离

rs2_deproject_pixel_to_point输入的dis与输出的距离是一样的,改变的只是x与y

camera_coordinate = rs.rs2_deproject_pixel_to_point(intrin=depth_intrin, pixel=[x, y], depth=dis)
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex-Leung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值