SLAM的一些名词解释(自看)

3D点云配准方法

  • ICP

Iterative Closest Point,迭代最近点算法。假设有A与B两帧点云,将B做T0变换变成B1,再在B1中利用K-d tree找到A中所有点的对应点。由所有对应点之间欧氏距离的平方和来作为评价函数,不断迭代,使得评价函数降低,最终将收敛于实际变换T的近似值。
特点:耗时,在场景变化小的情况下匹配位姿准确,但当场景快速变化,可能无法收敛。

  • NDT

Normal Destribution Transform正态分布变换。在传统的ICP算法里,对于场景的微小变化是“无法忍受”的。NDT改进了这一点,并且由于涉及了对体素的操作,因此可以对付更加稠密的地图。
首先应该知道的是,正态分布函数是一个数学上十分漂亮的函数。其均值反映位置,协方差矩阵反映离散程度。通过将点云分成一个个cell(类似体素),用一个正态分布函数来表示这个格子的状态。其中均值u为点的坐标平均值,方差反映各点与均值点的离散程度。
所以接下来的操作就是迭代找到使得两帧点云整体的正态分布尽可能相近。

滤波器

  • Unscented Kalman Filter无迹卡尔曼滤波器
    无迹卡尔曼滤波是在卡尔曼滤波器的基础上做的改进。从编程思想来看,其输入是估计的位姿,噪声的分布情况,已知的是控制输入、上一时刻状态对下一时刻状态的影响(函数关系),其输出是对被估计状态的一个校正。

曼哈顿距离与欧氏距离

直接见图比较方便。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值