Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
作者单位:港大, 同济大学, 字节AI Lab, UC伯克利
沿着目标检测领域中Dense和Dense-to-Sparse的框架,Sparse R-CNN建立了一种彻底的Sparse框架, 脱离anchor box,reference point,Region Proposal Network(RPN)等概念,无需Non-Maximum Suppression(NMS)后处理, 在标准的COCO benchmark上使用ResNet-50 FPN单模型在标准3x training schedule达到了44.5 AP和 22 FPS。
-
解读:https://zhuanlan.zhihu.com/p/310058362
-
代码:https://github.com/PeizeSun/SparseR-CNN
-
论文:https://msc.berkeley.edu/research/autonomous-vehicle/sparse_rcnn.pdf
目标检测交流群
CVer已建立目标检测微信交流群,已经上千人!想要进目标检测学习群的同学,可以直接加微信号:CVer5555。加的时候备注一下:目标检测+学校+昵称,即可。然后就可以拉你进群了。