集合卡尔曼滤波(EnKF)的三维滤波(模拟平面定位)例程,带逐行注释

在这里插入图片描述

这段 MATLAB 代码实现了一个三维动态系统的集合卡尔曼滤波(Ensemble Kalman Filter, EnKF)示例。代码的主要目的是通过模拟真实状态和测量值,使用 EnKF 方法对动态系统状态进行估计。

参数设置

  • 状态维度 (n):设置为6,表示系统有6个状态变量(如位置和速度)。
  • 测量维度 (m):设置为3,表示系统有3个测量变量。
  • 时间步数 (N):设置为100,表示模拟会进行100个时间步。
  • 集合成员数量 (num_ensemble):设置为10,表示使用10个样本进行状态估计。
  • 过程噪声和测量噪声的协方差矩阵
    • process_noise_cov 设置为较小的值,表示过程噪声较低。
    • measurement_noise_cov 设置为1,表示测量噪声较高。

初始化真实状态

  • 创建一个 nN 列的零矩阵 true_state 来存储真实状态。
  • 设置初始真实状态为 [1; 0; 2; 1; 1; 0.1],代表系统的初始位置和速度。

定义状态转移和测量矩阵

  • 状态转移矩阵 (A):定义如何从当前状态转移到下一个状态。这里使用了时间间隔 T 来更新位置和速度。
  • 测量矩阵 (H):定义如何从状态生成测量值,使用线性组合来映射状态到测量空间。

生成真实状态和测量值

  • 在一个循环中,从第二个时间步开始:
    • 使用状态转移矩阵 A 和过程噪声生成下一个真实状态。
    • 根据真实状态和测量噪声生成测量值,存储在 measurements 矩阵中。

初始化集合卡尔曼滤波

  • 生成初始集合 ensemble,所有成员都基于初始真实状态,加上随机扰动。
  • 创建一个零矩阵 estimates 用于存储每个时间步的状态估计。

执行集合卡尔曼滤波

  • 在循环中进行预测和更新步骤:
    • 预测步骤:根据状态转移矩阵更新集合成员,加入过程噪声。
    • 计算集合的均值和协方差:用于状态更新。
    • 更新步骤
      • 计算创新(观测值与预测值的差)。
      • 计算创新协方差。
      • 计算卡尔曼增益。
      • 更新集合成员,以反映新测量信息。
    • 存储当前时间步的状态估计。

绘制结果

  • 使用三维绘图(plot3)绘制真实状态、估计状态和测量值的轨迹。
  • 创建多个子图,显示不同状态变量(如 X、Y、Z 位移)的真实状态、估计状态和测量值的变化。

误差绘图

  • 新建图形窗口,绘制估计误差和观测误差。
  • 使用 fprintf 输出 X、Y、Z 轴的误差统计信息,包括最大误差和平均绝对误差。

总结

整段代码的主要目标是通过集合卡尔曼滤波算法对一个三维动态系统进行状态估计。它通过模拟真实状态和测量值的过程,展示了如何使用 EnKF 来处理动态系统,并通过可视化结果和误差分析来评估估计的准确性。

部分代码

% 集合卡尔曼滤波示例 三维
% 2024-11-12/Ver1
clear; clc; close all; % 清除工作空间,清空命令窗口,关闭所有图形窗口
rng(0); % 设置随机数生成器的种子,以确保结果可重复

% 参数设置
n = 6; % 状态维度(4个状态变量)
m = 3; % 测量维度(2个测量变量)
N = 100; % 时间步数(总共进行100个时间步的模拟)
num_ensemble = 10; % 集合成员数量(使用10个样本进行估计)
process_noise_cov = 1e-5 * eye(n); % 过程噪声协方差矩阵(小值,表示低噪声)
measurement_noise_cov = 1 * eye(m); % 测量噪声协方差矩阵(较大值,表示较高噪声)

% 初始化真实状态
true_state = zeros(n, N); % 创建一个n行N列的零矩阵,用于存储真实状态
true_state(:, 1) = [1; 0; 2; 1; 1 ; 0.1]; % 设置初始真实状态(X位移、X速度、Y位移、Y速度)

T = 1; %时间间隔
% 状态转移矩阵
A = [1 T 0 0 0 0;  % 状态转移矩阵,定义如何从一个状态转移到下一个状态
     0 1 0 0 0 0 ; 
     0 0 1 T 0 0; 
     0 0 0 1 0 0;
     0 0 0 0 1 T;
     0 0 0 0 0 1];

% 测量矩阵
H = [1 0 0 0 0 0; % 测量矩阵,定义如何从状态生成测量值
     0 0 1 0 0 0;
     0 0 0 0 1 0];



下载链接:https://download.csdn.net/download/callmeup/89986984

运行结果

三维轨迹图:
在这里插入图片描述

  • 各轴状态量
    在这里插入图片描述

  • 误差曲线

在这里插入图片描述

  • 误差统计特性输出

在这里插入图片描述
如有需要,可私信或通过下方的卡片联系我

EnKF(Ensemble Kalman Filter)是一种基于集合方法的卡尔曼滤波器,用于数据同化和状态估计。它是一种适用于非线性系统的滤波算法,通过使用集合成员来近似系统的概率分布,从而提高了滤波的准确性和稳定性。 EnKF的基本思想是通过将系统的状态表示为一个集合(即集合成员),并使用观测数据来更新集合成员的权重,从而估计系统的状态。EnKF的主要步骤包括以下几个方面: 1. 初始化集合成员:根据先验信息,生成一组初始状态的集合成员。 2. 预测步骤:使用系统的动力学模型,对集合成员进行预测,得到下一个时间步的状态估计。 3. 更新步骤:使用观测数据来更新集合成员的权重,从而调整状态估计。更新步骤主要包括以下几个子步骤: - 计算观测与预测状态之间的差异(即观测残差)。 - 计算观测残差的协方差矩阵。 - 计算观测残差与集合成员之间的协方差矩阵。 - 根据卡尔曼增益,将观测残差的信息传递给集合成员,更新集合成员的权重。 4. 重采样步骤:根据更新后的权重,对集合成员进行重采样,以保持集合的多样性。 通过重复执行预测步骤、更新步骤和重采样步骤,EnKF可以逐步改进状态估计,并逼近真实系统的状态。 在Matlab中,可以使用EnKF进行数据同化和状态估计。Matlab提供了一些EnKF的工具包,例如EnKF Toolbox和DART(Data Assimilation Research Testbed)。这些工具包提供了EnKF算法的实现代码和示例,可以帮助用户快速上手使用EnKF进行数据同化和状态估计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值