侵权删!!!!!!!!!!!!!!!!!!!!!
机器人动力学到达是做什么的?
一个简单的实例:利用飞球的转速不同去控制阀门的大小,从而控制转速,但是有一个问题,不同的蒸汽机他的阀门的重量是不一样的,相对应的飞球的质量也是不一样的, 控制相对来说也是很难的。现在来说,可以使用单片机利用pid算法进行调节,但是pid一般来说是在盲目的去调整,如果知道了机器人的动力学,根据动力学方程的性能指标就可以控制相关的控制参数。
最显著的特点就是:响应性更快,稳定性越高,抗稳定性越强等等
以机械臂为例,机械臂的关节可以分为刚性关节和柔性关节,一般来说整个机械传递过程,同时几乎为电机+减速度所构成的,他们之间最主要的区别是:电机->减速器->连杆的过程中,中间是否有变形,当我们可以忽略这个变形的时候,我们把他成为刚性关节,不能够被忽略的话我们把他成为柔性关节。比如,下面的图中减速器部分是一个弹簧,不能够被忽略。所以就需要不同的建模思路。
动力学方程的四种方式:不同的推导动力学方程到最后都是可以统一的。
1.拉格朗日方程
如下图就是拉格朗日方程的一般表达形式,并且H、C、G都可以用下面的方程来表达。
特点:表达式是非常紧凑的,对于后面的控制等是非常有帮助的。
还可以写成参数分离的形式:其中p是一些常量,Y矩阵包括了角度,角速度,角加速度。这样子写的好处是为后面做了一个参数辨识。但是问题随之出现Y矩阵有时可能不是满秩(这个概念我之前的文章有简单讨论过),为系统辨识增加了一些难度。
那么为了解决不是满秩的情况,从而衍生出了,最小参数集的方式,采用对Y矩阵进行降维的方式,把不是满秩的Y矩阵,降维成满秩的状态。
2.牛顿欧拉的方式
采用递推的方式,从第一关节逐步递推到最后一个关节。
特点:运算速度更快
通过以上几种方法,建立出了动力学方程,那么接下来就需要对其进行动力学辨识,而辨识主要是辨识 P矩阵,Y矩阵是通过位置,速度,加速度等一些关系进行求解的,而辨识就是通过tao和Y矩阵,求出P矩阵