二次规划(QP)+样条插值
总结:
1. 转换到 SL frame, 采样到多个点的曲线方程( L 关于S 的方程)--表示的是横坐标,纵坐标的关系)。每一段用统一的5阶样条表示
2.定义目标函数 曲线方程关于s的一阶、二阶,三阶导数。
3.定义约束
- 初始点,终点约束
- 连续性约束
- 障碍物横向位置的约束(上下)
目标,筛选并获得最优的路径
1. 目标函数
1.1 获得路径长度
路径定义在station-lateral坐标系中。s的变化区间为从车辆当前位置点到默认路径的长度 (arc length 弧长)。
1.2 获得样条段
将路径划分为n段,每段路径用一个多项式来表示。
1.3 定义样条段函数
每个样条段 i 都有沿着参考线的累加距离d_i (弧长)。每段的路径默认用5介多项式表示。
l 表示的就是横向的偏离。--重点关注的是横向offset.
1.4 定义每个样条段优化目标函数
关于距离的微分? 意义? 纯粹为了定义的目的--- 由曲率的定义知道,1,2,3阶导数和曲率相关。(https://baike.baidu.com/item/%E6%9B%B2%E7%8E%87%E5%8D%8A%E5%BE%84/2036643 公式推导部分.)