欧拉角 ZYX
ZYX欧拉角是一种描述刚体旋转的方式,表示绕固定坐标系的Z轴、Y轴和X轴依次旋转的角度。具体来说,ZYX欧拉角的旋转顺序如下:
- 第一次旋转:绕固定坐标系的Z轴旋转角度 α \alpha α
- 第二次旋转:绕新的Y轴旋转角度 β \beta β
- 第三次旋转:绕新的X轴旋转角度 γ \gamma γ
通过这三个旋转,可以将一个坐标系转换到另一个坐标系。每次旋转都可以用一个旋转矩阵表示,最终的旋转矩阵是这三个矩阵的乘积https://blog.csdn.net/subtitle_/article/details/131915276。
RPY 与 ZYX
RPY(Roll-Pitch-Yaw)和ZYX欧拉角都是描述三维空间中物体旋转的方式,但它们的旋转顺序和应用场景有所不同。
RPY(Roll-Pitch-Yaw)角
• 旋转顺序:先绕X轴(Roll),再绕Y轴(Pitch),最后绕Z轴(Yaw)。
• 应用:常用于飞行器和机器人姿态控制,因为这种顺序更符合人类的直观理解https://blog.csdn.net/qq_52666270/article/details/131009744。
ZYX欧拉角
• 旋转顺序:先绕Z轴,再绕Y轴,最后绕X轴。
• 应用:广泛用于计算机图形学和机械臂控制等领域https://wenku.csdn.net/answer/6ok8hpdr5s。
区别总结
1.
旋转顺序:RPY是X-Y-Z顺序,而ZYX欧拉角是Z-Y-X顺序。
2.
适用场景:RPY角在飞行器和机器人控制中更常用,而ZYX欧拉角在计算机图形学和机械臂控制中更常见。
3. 数学处理:RPY角避免了一些欧拉角的“万向节锁死”问题,但在连续变换时仍可能面临数值稳定性问题https://wenku.csdn.net/answer/6ok8hpdr5s。
欧拉角是绕自身坐标系还是固定坐标系旋转
欧拉角的旋转可以分为两种类型:内在旋转(intrinsic rotations)和外在旋转(extrinsic rotations)。
-
内在旋转:这是绕物体自身的坐标系进行的旋转。每次旋转后,新的坐标系会随之改变。例如,ZYX欧拉角的旋转顺序是先绕自身的Z轴,再绕新的Y轴,最后绕新的X轴https://www.zhihu.com/question/366916150。
-
外在旋转:这是绕固定坐标系(通常是世界坐标系)进行的旋转。每次旋转都是相对于固定的坐标系进行的。例如,XYZ固定角的旋转顺序是先绕固定的X轴,再绕固定的Y轴,最后绕固定的Z轴https://blog.csdn.net/chen_mp/article/details/133365293。
两种旋转存在什么联系吗
内在旋转和外在旋转之间确实存在联系。具体来说,如果将内在旋转的第一次旋转和第三次旋转互换位置,那么它们就等价于外在旋转https://www.cnblogs.com/armme/p/10596697.htmlhttps://blog.csdn.net/hy3316597/article/details/50966633。
具体解释
• 内在旋转:每次旋转都是绕物体自身的坐标轴进行的。比如,ZYX内在旋转是先绕自身的Z轴,再绕新的Y轴,最后绕新的X轴。
• 外在旋转:每次旋转都是绕固定坐标系的轴进行的。比如,XYZ外在旋转是先绕固定的X轴,再绕固定的Y轴,最后绕固定的Z轴。
等价性
如果我们将ZYX内在旋转的顺序调整为X-Y-Z,并且每次旋转都绕固定坐标系的轴进行,那么它就等价于XYZ外在旋转。反之亦然https://blog.csdn.net/hy3316597/article/details/50966633。
内旋和外旋 三次旋转矩阵的相乘顺序
内旋和外旋的旋转矩阵相乘顺序有所不同,具体如下:
内旋(Intrinsic Rotations)
内旋是绕物体自身的坐标系进行的旋转。每次旋转后,新的坐标系会随之改变。对于ZYX内旋,旋转矩阵的相乘顺序是:
R
=
R
x
(
γ
)
⋅
R
y
(
β
)
⋅
R
z
(
α
)
R = R_x(\gamma) \cdot R_y(\beta) \cdot R_z(\alpha)
R=Rx(γ)⋅Ry(β)⋅Rz(α)
其中:
R
x
(
γ
)
R_x(\gamma)
Rx(γ) 表示绕新的X轴旋转的矩阵
R y ( β ) R_y(\beta) Ry(β) 表示绕新的Y轴旋转的矩阵
R z ( α ) R_z(\alpha) Rz(α) 表示绕新的Z轴旋转的矩阵
外旋(Extrinsic Rotations)
外旋是绕固定坐标系进行的旋转。每次旋转都是相对于固定的坐标系进行的。对于ZYX外旋,旋转矩阵的相乘顺序是:
R
=
R
z
(
α
)
⋅
R
y
(
β
)
⋅
R
x
(
γ
)
R = R_z(\alpha) \cdot R_y(\beta) \cdot R_x(\gamma)
R=Rz(α)⋅Ry(β)⋅Rx(γ)
其中:
R
z
(
α
)
R_z(\alpha)
Rz(α) 表示绕固定Z轴旋转的矩阵
R y ( β ) R_y(\beta) Ry(β) 表示绕固定Y轴旋转的矩阵
R x ( γ ) R_x(\gamma) Rx(γ) 表示绕固定X轴旋转的矩阵
关系与等价性
尽管内旋和外旋的旋转顺序不同,但在特定条件下,它们可以等价。例如,ZYX内旋等价于XYZ外旋https://blog.csdn.net/xinxiangwangzhi_/article/details/124650910https://blog.csdn.net/nature1949/article/details/137383709。这种等价性在数学上可以通过旋转矩阵的性质来证明。
希望这些信息对你有帮助!如果你有更多问题或需要进一步的解释,请告诉我。https://blog.csdn.net/xinxiangwangzhi_/article/details/124650910: 内旋外旋与矩阵左乘右乘 - CSDN博客https://blog.csdn.net/nature1949/article/details/137383709: 欧拉角及其旋转矩阵,旋转顺序与内旋/外旋及其代码 - CSDN博客
XYZ内旋 相当于 RPY。 对应ZYX外旋
是的,你的理解是正确的。
XYZ内旋(RPY)
XYZ内旋(Roll-Pitch-Yaw)是绕物体自身坐标系的旋转,顺序是:
- Roll(绕X轴旋转)
- Pitch(绕Y轴旋转)
- Yaw(绕Z轴旋转)
ZYX外旋
ZYX外旋是绕固定坐标系的旋转,顺序是:
- Yaw(绕固定Z轴旋转)
- Pitch(绕固定Y轴旋转)
- Roll(绕固定X轴旋转)
这两种旋转方式在数学上是等价的,因为它们描述了相同的最终姿态,只是旋转的参考系和顺序不同。
内旋(绕自身坐标系旋转)按照旋转矩阵顺序左乘 外旋(绕固定坐标系旋转)按照旋转矩阵顺序右乘
是的,你的理解是正确的。
内旋(Intrinsic Rotations)
内旋是绕物体自身坐标系进行的旋转。每次旋转后,新的坐标系会随之改变。旋转矩阵的相乘顺序是左乘:
R
=
R
x
(
γ
)
⋅
R
y
(
β
)
⋅
R
z
(
α
)
R = R_x(\gamma) \cdot R_y(\beta) \cdot R_z(\alpha)
R=Rx(γ)⋅Ry(β)⋅Rz(α)
外旋(Extrinsic Rotations)
外旋是绕固定坐标系进行的旋转。每次旋转都是相对于固定的坐标系进行的。旋转矩阵的相乘顺序是右乘:
R
=
R
z
(
α
)
⋅
R
y
(
β
)
⋅
R
x
(
γ
)
R = R_z(\alpha) \cdot R_y(\beta) \cdot R_x(\gamma)
R=Rz(α)⋅Ry(β)⋅Rx(γ)
这种不同的相乘顺序反映了内旋和外旋在参考系上的区别。内旋的每次旋转都基于物体当前的坐标系,而外旋的每次旋转都基于固定的坐标系。