比如,可以把点云转换为.tif,通过一部分截取8位图像,进行sift,将得到的内点序号序列,转换为三维坐标序列,然后将三维坐标转换为点云sift_cloud1和sift_cloud2,这时候,由于是一一对应的,即在pcl中,query_index和目标index同时为(1,1),(2,2)...,权重可以使用opencv中的matcher.distance,
这时候就粗配准ok
比如,可以把点云转换为.tif,通过一部分截取8位图像,进行sift,将得到的内点序号序列,转换为三维坐标序列,然后将三维坐标转换为点云sift_cloud1和sift_cloud2,这时候,由于是一一对应的,即在pcl中,query_index和目标index同时为(1,1),(2,2)...,权重可以使用opencv中的matcher.distance,
这时候就粗配准ok