YOLOv8改进:利用GhostModule提升C2f模块性能

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

YOLOv8改进:利用GhostModule提升C2f模块性能

简介

YOLOv8作为目前最先进的目标检测算法之一,在性能和精度方面都取得了显著进步。然而,C2f模块作为YOLOv8模型中的重要组成部分,其计算量较大,在部署于移动端或嵌入式设备时会遇到性能瓶颈。为了解决这一问题,本文提出了一种利用CVPR2024-DynamicConv提出的GhostModule改进C2f模块的方法,以提升模型性能和轻量化。

原理详解

GhostModule

GhostModule是一种轻量级的卷积模块,它通过将标准卷积核拆分成稀疏特征图和Ghost特征图来降低计算量,同时可以保持模型的精度。

应用于C2f模块

将GhostModule应用于C2f模块可以有效降低该模块的计算量,而不会显著降低模型精度。

应用场景

该改进方案适用于各种目标检测任务,例如:

  • 移动端目标检测: 将轻量化后的 YOLOv8 模型部署到智
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值