鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进:利用GhostModule提升C2f模块性能
简介
YOLOv8作为目前最先进的目标检测算法之一,在性能和精度方面都取得了显著进步。然而,C2f模块作为YOLOv8模型中的重要组成部分,其计算量较大,在部署于移动端或嵌入式设备时会遇到性能瓶颈。为了解决这一问题,本文提出了一种利用CVPR2024-DynamicConv提出的GhostModule改进C2f模块的方法,以提升模型性能和轻量化。
原理详解
GhostModule
GhostModule是一种轻量级的卷积模块,它通过将标准卷积核拆分成稀疏特征图和Ghost特征图来降低计算量,同时可以保持模型的精度。
应用于C2f模块
将GhostModule应用于C2f模块可以有效降低该模块的计算量,而不会显著降低模型精度。
应用场景
该改进方案适用于各种目标检测任务,例如:
- 移动端目标检测: 将轻量化后的 YOLOv8 模型部署到智