横截面排序和因子的示例

以下是 Alpha#40 策略在 DolphinDB 中的实现代码及详细解释:


1. 计算十日滚动标准差和相关系数

// 按股票代码分组,计算滚动指标
factorData = select 
    date, 
    symbol, 
    mstd(high, 10) as std_dev,          // 10日最高价标准差
    mcorr(high, volume, 10) as corr_coef  // 10日最高价与成交量相关系数
from 
    stock_data 
context by symbol 
order by date;

关键点

  • mstd(high, 10):计算过去10日(包括当前日)的最高价标准差。
  • mcorr(high, volume, 10):计算过去10日最高价与成交量的滚动相关系数。
  • context by symbol:按股票分组,每组独立计算时间窗口。

2. 横截面排序并生成 Alpha 值

// 按日期横截面排序并计算 Alpha
alpha40 = select 
    date, 
    symbol, 
    (-1 * rank(std_dev)) * corr_coef as alpha40  // 排名取反后乘以相关系数
from 
    factorData 
context by date;

关键点

  • rank(std_dev):在每个交易日(context by date)内,对所有股票的 std_dev 进行升序排名(最小值排名为1)。
  • -1 * rank(...):将排名取反(使得低标准差股票排名更负)。
  • 最终 Alpha 值 = 排名 * 相关系数。

完整代码

// 步骤1:计算滚动标准差和相关系数
factorData = select 
    date, 
    symbol, 
    mstd(high, 10) as std_dev, 
    mcorr(high, volume, 10) as corr_coef 
from 
    stock_data 
context by symbol 
order by date;

// 步骤2:横截面排序生成 Alpha
alpha40 = select 
    date, 
    symbol, 
    (-1 * rank(std_dev)) * corr_coef as alpha40 
from 
    factorData 
context by date;

验证逻辑

  1. 数据输入:假设原始表 stock_data 包含以下列:

    • date(日期)、symbol(股票代码)、high(当日最高价)、volume(成交量)。
  2. 输出结果:表 alpha40 包含三列:

    • date:日期
    • symbol:股票代码
    • alpha40:当日计算的 Alpha#40 因子值

与 BigQuant 的对比

BigQuant 函数DolphinDB 实现说明
m_stddev(high, 10)mstd(high, 10)10日滚动标准差
横截面排序rank(std_dev) context by date按日对所有股票排序
相关系数mcorr(high, volume, 10)10日滚动相关系数

注意事项

  1. 时间窗口对齐

    • mstdmcorr 的窗口包含当前日及前9日(共10日),若需要排除当前日,可调整窗口参数为 10, 1(窗口长度10,起点1)。
    • 例如:mstd(high, 10, 1) 表示从当前日前1日开始的前10日数据。
  2. 缺失值处理

    • 若数据存在缺失值,需提前填充或过滤:
      // 用前值填充缺失
      update stock_data set high = prev(high) where high == NULL context by symbol;
      
  3. 性能优化

    • 若数据量较大,建议使用分区表(如按日期分区)提升查询效率:
      db = database("dfs://stockDB", VALUE, 2020.01.01..2023.12.31)
      stock_data = loadTable(db, "stock_data")  // 从分区表读取
      

通过以上代码,你可以在 DolphinDB 中完整实现 Alpha#40 因子计算逻辑。如果需要进一步回测或实时计算,可将结果表 alpha40 与其他交易信号结合使用。

若要使用机器学习方法挖掘横截面因子,你可以使用Python中的一些常见机器学习库(如scikit-learn)来构建模型。以下是一个示例代码,演示如何使用线性回归模型挖掘横截面因子: ```python import pandas as pd from sklearn.linear_model import LinearRegression # 假设有一个包含因变量自变量的数据集,其中因变量为'y',自变量为'x1'、'x2'等 data = pd.DataFrame({'y': [1, 2, 3, 4, 5], 'x1': [0.1, 0.2, 0.3, 0.4, 0.5], 'x2': [0.5, 0.4, 0.3, 0.2, 0.1]}) # 提取自变量因变量 X = data[['x1', 'x2']] y = data['y'] # 构建线性回归模型 model = LinearRegression() # 拟合模型 model.fit(X, y) # 输出回归系数 print('Intercept:', model.intercept_) print('Coefficients:', model.coef_) ``` 在这个示例中,我们假设有一个包含因变量('y')自变量('x1'、'x2'等)的数据集。我们使用`pd.DataFrame`创建了一个DataFrame对象来存储数据。然后,我们使用`data[['x1', 'x2']]`提取自变量('x1''x2')`data['y']`提取因变量('y')。 接下来,我们使用`LinearRegression`类构建了一个线性回归模型,并使用`fit`方法拟合模型。最后,我们通过访问`model.intercept_``model.coef_`输出了回归系数(截距斜率)。 请注意,这只是一个简单的示例,实际情况中可能需要根据具体需求对数据进行预处理、选择其他机器学习模型,以及进行模型评估等操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值