周学习总结

EM算法

高斯混合模型

随机变量 X 满足如下概率分布:
P ( X ; θ ) = ∑ j = 1 k α j φ ( X ; θ j ) P(X ; \theta)=\sum_{j=1}^{k} \alpha_{j} \varphi\left(X ; \theta_{j}\right) P(X;θ)=j=1kαjφ(X;θj)
其中 α j \alpha_{j} αj 是满足 α j > 0 \alpha_{j}>0 αj>0 ∑ j = 1 k α j = 1 \sum_{j=1}^{k} \alpha_{j}=1 j=1kαj=1的系数; φ ( X ; θ j ) \varphi\left(X ; \theta_{j}\right) φ(X;θj)是参数 θ j = ( μ j , σ j 2 ) \theta_{j}=\left(\mu_{j}, \sigma_{j}^{2}\right) θj=(μj,σj2)的高斯分布密度函数。
假设 α j \alpha_j αj为随机变量 z j z_j zj服从概率分布 z j   P ( Z ; λ ) z_j ~ P(Z; \lambda) zj P(Z;λ),则参数 θ = { λ , μ , ∑ } \theta=\{\lambda,\mu,\sum\} θ={λ,μ,}

由于样本集X的变量相互独立,因此想要找到一组参数 θ \theta θ使事件发生的概率最大
arg ⁡ max ⁡ θ ^ P ( X ; θ ) = arg ⁡ max ⁡ θ ^ ∏ i = 1 m ∑ j = 1 n P ( X = x i , Z = z j ; θ ) = arg ⁡ max ⁡ θ ^ ∏ X ∑ Z P ( X , Z ; θ ) = arg ⁡ max ⁡ θ ^ L ( θ ) \begin{aligned} \arg \max _{\hat{\theta}} P(X ; \theta) &=\arg \max _{\hat{\theta}} \prod_{i=1}^{m} \sum_{j=1}^{n} P\left(X=x_{i}, Z=z_{j} ; \theta\right) \\ &=\arg \max _{\hat{\theta}} \prod_{X} \sum_{Z} P(X, Z ; \theta) \\ &=\arg \max _{\hat{\theta}} L(\theta) \end{aligned} argθ^maxP(X;θ)=argθ^maxi=1mj=1nP(X=xi,Z=zj;θ)=argθ^maxXZP(X,Z;θ)=argθ^maxL(θ)
Z是函数的隐变量,通常是要求解多个概率的系数,且 ∑ j = 1 P ( Z = z j ) = 1 \sum_{j=1} P(Z=z_j) = 1 j=1P(Z=zj)=1

(1) 变换似然函数并寻找下界
对似然函数取对数,用 l o g ( ∑ i = 1 x i ) > = ∑ i = 1 l o g ( x i ) log(\sum_{i=1} x_i) >= \sum_{i=1} log(x_i) log(i=1xi)>=i=1log(xi)凹函数的性质求解下界
L ( θ ) = ∑ i = 1 m log ⁡ ∑ j = 1 n P ( X = x i , Z = z j ; θ ) = ∑ i = 1 m log ⁡ ∑ j = 1 n Q ( Z = z j ; θ z ) P ( X = x i , Z = z j ; θ ) Q ( Z = z j ; θ z ) ≥ ∑ i = 1 m ∑ j = 1 n Q ( Z = z j ; θ z ) log ⁡ P ( X = x i , Z = z j ; θ ) Q ( Z = z j ; θ z ) = ∑ X ∑ Z Q ( Z ; θ z ) log ⁡ P ( X , Z ; θ ) Q ( Z ; θ z ) \begin{aligned} \mathcal{L}(\theta) &=\sum_{i=1}^{m} \log \sum_{j=1}^{n} P\left(X=x_{i}, Z=z_{j} ; \theta\right) \\ &=\sum_{i=1}^{m} \log \sum_{j=1}^{n} Q\left(Z=z_{j} ; \theta_{z}\right) \frac{P\left(X=x_{i}, Z=z_{j} ; \theta\right)}{Q\left(Z=z_{j} ; \theta_{z}\right)} \\ & \geq \sum_{i=1}^{m} \sum_{j=1}^{n} Q\left(Z=z_{j} ; \theta_{z}\right) \log \frac{P\left(X=x_{i}, Z=z_{j} ; \theta\right)}{Q\left(Z=z_{j} ; \theta_{z}\right)} \\ &=\sum_{X} \sum_{Z} Q\left(Z ; \theta_{z}\right) \log \frac{P(X, Z ; \theta)}{Q\left(Z ; \theta_{z}\right)} \end{aligned} L(θ)=i=1mlogj=1nP(X=xi,Z=zj;θ)=i=1mlogj=1nQ(Z=zj;θz)Q(Z=zj;θz)P(X=xi,Z=zj;θ)i=1mj=1nQ(Z=zj;θz)logQ(Z=zj;θz)P(X=xi,Z=zj;θ)=XZQ(Z;θz)logQ(Z;θz)P(X,Z;θ)

E 步

高斯混合模型产生了 m 个样例,每个样例 x i x_i xi 的隐含类别 Z = z j Z = z_j Z=zj 的概率,E步即求解隐变量 z j z_j zj的过程,先估计参数 θ = { α , μ , ∑ } \theta=\{ \alpha, \mu,\sum\} θ={α,μ,}的初值,则Z的后验概率为
Q i ( Z = z j ) = P ( Z = z j ∣ X = x i ; θ ) = P ( Z = z j , X = x i ; θ ) P ( X = x i ; θ ) = P ( Z = z j , X = x i ; θ ) ∑ r = 1 k P ( Z = z r , X = x i ; θ ) = α j φ ( X = x i ; θ j ) ∑ r = 1 k α r φ ( X = x i ; θ r ) \begin{aligned} Q_{i}\left(Z=z_{j}\right) &=P\left(Z=z_{j} \mid X=x_{i} ; \theta\right) \\ &=\frac{P\left(Z=z_{j}, X=x_{i} ; \theta\right)}{P\left(X=x_{i} ; \theta\right)} \\ &=\frac{P\left(Z=z_{j}, X=x_{i} ; \theta\right)}{\sum_{r=1}^{k} P\left(Z=z_{r}, X=x_{i} ; \theta\right)} \\ &=\frac{\alpha_{j} \varphi\left(X=x_{i} ; \theta_{j}\right)}{\sum_{r=1}^{k} \alpha_{r} \varphi\left(X=x_{i} ; \theta_{r}\right)} \end{aligned} Qi(Z=zj)=P(Z=zjX=xi;θ)=P(X=xi;θ)P(Z=zj,X=xi;θ)=r=1kP(Z=zr,X=xi;θ)P(Z=zj,X=xi;θ)=r=1kαrφ(X=xi;θr)αjφ(X=xi;θj)

M步

M步其实就是在求解出 Q i ( Z = z j ) Q_i(Z=z_j) Qi(Z=zj)之后,根据极大似然函数求极值求解参数 θ \theta θ的值
L ( θ ) = ∑ X ∑ Z Q ( Z ; θ z ) log ⁡ P ( X , Z ; θ ) Q ( Z ; θ z ) = ∑ i = 1 m ∑ j = 1 k Q i ( Z = z j ; θ ) log ⁡ P ( X = x i , Z = z j ; θ ) Q i ( Z = z j ; θ ) = ∑ i = 1 m ∑ j = 1 k Q i ( Z = z j ) log ⁡ P ( X = x i ; μ , Σ ) P ( Z = z j ; λ ) Q i ( Z = z j ) \begin{aligned} \mathcal{L}(\theta) &=\sum_{X} \sum_{Z} Q\left(Z ; \theta_{z}\right) \log \frac{P(X, Z ; \theta)}{Q\left(Z ; \theta_{z}\right)} \\ &=\sum_{i=1}^{m} \sum_{j=1}^{k} Q_{i}\left(Z=z_{j} ; \theta\right) \log \frac{P\left(X=x_{i}, Z=z_{j} ; \theta\right)}{Q_{i}\left(Z=z_{j} ; \theta\right)} \\ &=\sum_{i=1}^{m} \sum_{j=1}^{k} Q_{i}\left(Z=z_{j}\right) \log \frac{P\left(X=x_{i} ; \mu, \Sigma\right) P\left(Z=z_{j} ; \lambda\right)}{Q_{i}\left(Z=z_{j}\right)} \end{aligned} L(θ)=XZQ(Z;θz)logQ(Z;θz)P(X,Z;θ)=i=1mj=1kQi(Z=zj;θ)logQi(Z=zj;θ)P(X=xi,Z=zj;θ)=i=1mj=1kQi(Z=zj)logQi(Z=zj)P(X=xi;μ,Σ)P(Z=zj;λ)

  • 求解参数 μ l \mu_{l} μl,公式就和我们平时求解均值的公式一样,这里 w i , j = Q i ( Z = z j ) w_{i,j}=Q_i(Z=z_j) wi,j=Qi(Z=zj)
    μ l = ∑ i = 1 m w i , l x i ∑ i = 1 m w i , l \mu_{l}=\frac{\sum_{i=1}^{m} w_{i, l} x_{i}}{\sum_{i=1}^{m} w_{i, l}} μl=i=1mwi,li=1mwi,lxi
  • 求解参数 ∑ l \sum_l l
    Σ l = ∑ i = 1 m ( x i − μ l ) ( x i − μ l ) T w i , l ∑ i = 1 m w i , l \Sigma_{l}=\frac{\sum_{i=1}^{m}\left(x_{i}-\mu_{l}\right)\left(x_{i}-\mu_{l}\right)^{T} w_{i, l}}{\sum_{i=1}^{m} w_{i, l}} Σl=i=1mwi,li=1m(xiμl)(xiμl)Twi,l
  • 求解 α l \alpha_l αl
    α l = 1 m ∑ i = 1 m w i , l \alpha_{l}=\frac{1}{m} \sum_{i=1}^{m} w_{i, l} αl=m1i=1mwi,l
详细过程

高斯混合回归 GMR

高斯混合回归 ( Gaussian Mixture Regression)是另一种流行的时间序列和运动表示技术。它依赖于多元高斯分布的线性变换和条件反射性质。GMR提供了一种综合机制来计算输出分布,其计算时间与用于训练模型的数据点的数量无关。GMR的一个特点是它不直接对回归函数进行建模。相反,它首先以高斯混合模型(GMM)的形式来模拟数据的联合概率密度。然后可以从学习的联合密度模型计算回归函数,从而非常快速地计算条件分布。

在GMR中,输入变量和输出变量都可以是多维的。可以选择输入-输出维度的任何子集,如果需要,它可以在每个时间步长中进行更改。因此,可以考虑输入-输出映射的任何组合,其中对其余维度的期望被计算为一个多元分布。下面,我们将在时间步 t t t的数据点 x t ∈ R D \boldsymbol{x}_{t} \in \mathbb{R}^{D} xtRD的块分解,将GMM中第 k k k个高斯分布的中心 μ k \mu_k μk和协方差 Σ k \Sigma_k Σk表示为
x t = [ x t I x t O ] , μ k = [ μ k I μ k O ] , Σ k = [ Σ k I Σ k I O Σ k O I Σ k O ] \boldsymbol{x}_{t}=\left[\begin{array}{c} \boldsymbol{x}_{t}^{I} \\ \boldsymbol{x}_{t}^{O} \end{array}\right], \quad \boldsymbol{\mu}_{k}=\left[\begin{array}{l} \boldsymbol{\mu}_{k}^{I} \\ \boldsymbol{\mu}_{k}^{O} \end{array}\right], \quad \boldsymbol{\Sigma}_{k}=\left[\begin{array}{cc} \boldsymbol{\Sigma}_{k}^{I} & \boldsymbol{\Sigma}_{k}^{I O} \\ \boldsymbol{\Sigma}_{k}^{O I} & \boldsymbol{\Sigma}_{k}^{O} \end{array}\right] xt=[xtIxtO],μk=[μkIμkO],Σk=[ΣkIΣkOIΣkIOΣkO]

我们首先考虑基于时间的轨迹的例子,使用 x t I \boldsymbol{x}_{t}^I xtI的时间变量。在每个时间步长 t t t P ( x t O ∣ x t I ) P(\boldsymbol{x}_t^O|\boldsymbol{x}_t^I) P(xtOxtI)可以计算为多元高斯条件分布
P ( x t o ∣ x t I ) = ∑ k = 1 K h k ( x t I ) N ( μ ^ k o ( x t I ) , Σ ^ k o ) , \mathcal{P}\left(\boldsymbol{x}_{t}^{o} \mid \boldsymbol{x}_{t}^{I}\right)=\sum_{k=1}^{K} h_{k}\left(\boldsymbol{x}_{t}^{I}\right) \mathcal{N}\left(\hat{\boldsymbol{\mu}}_{k}^{o}\left(\boldsymbol{x}_{t}^{I}\right), \hat{\boldsymbol{\Sigma}}_{k}^{o}\right), P(xtoxtI)=k=1Khk(xtI)N(μ^ko(xtI),Σ^ko),
则高斯分布的参数更新为:
μ ^ k o ( x t I ) = μ k o + Σ k O I Σ k I − 1 ( x t I − μ k I ) Σ ^ k o = Σ k O − Σ k O I Σ k I − 1 Σ k I O  and  h k ( x t I ) = π k N ( x t I ∣ μ k I , Σ k I ) ∑ i = 1 K π i N ( x t I ∣ μ i I , Σ i I ) \hat{\boldsymbol{\mu}}_{k}^{o}\left(\boldsymbol{x}_{t}^{I}\right)=\boldsymbol{\mu}_{k}^{o}+\boldsymbol{\Sigma}_{k}^{O I} \boldsymbol{\Sigma}_{k}^{I-1}\left(\boldsymbol{x}_{t}^{I}-\boldsymbol{\mu}_{k}^{I}\right) \\ \begin{aligned} \hat{\boldsymbol{\Sigma}}_{k}^{o} &=\boldsymbol{\Sigma}_{k}^{O}-\boldsymbol{\Sigma}_{k}^{O I} \boldsymbol{\Sigma}_{k}^{I-1} \boldsymbol{\Sigma}_{k}^{I O} \\ \text { and } \quad h_{k}\left(\boldsymbol{x}_{t}^{I}\right) &=\frac{\pi_{k} \mathcal{N}\left(\boldsymbol{x}_{t}^{I} \mid \boldsymbol{\mu}_{k}^{I}, \boldsymbol{\Sigma}_{k}^{I}\right)}{\sum_{i=1}^{K} \pi_{i} \mathcal{N}\left(\boldsymbol{x}_{t}^{I} \mid \boldsymbol{\mu}_{i}^{I}, \boldsymbol{\Sigma}_{i}^{I}\right)} \end{aligned} μ^ko(xtI)=μko+ΣkOIΣkI1(xtIμkI)Σ^ko and hk(xtI)=ΣkOΣkOIΣkI1ΣkIO=i=1KπiN(xtIμiI,ΣiI)πkN(xtIμkI,ΣkI)
其中 h k h_k hk是EM算法估计的E步,求解隐变量

当需要单峰输出分布时,可以使用总均值和方差定律(见图,右)来用高斯分布来近似该分布
P ( x t o ∣ x t I ) = N ( x t o ∣ μ ^ O ( x t I ) , Σ ^ o ( x t I ) ) μ ^ O ( x t I ) = ∑ k = 1 K h k ( x t I ) μ ^ k O ( x t I ) Σ ^ O ( x t I ) = ∑ k = 1 K h k ( x t I ) ( Σ ^ k o + μ ^ k O ( x t I ) μ ^ k O ( x t I ) ⊤ ) − μ ^ O ( x t I ) μ ^ O ( x t I ) ⊤ \begin{aligned} \mathcal{P}\left(\boldsymbol{x}_{t}^{o} \mid \boldsymbol{x}_{t}^{I}\right) &=\mathcal{N}\left(\boldsymbol{x}_{t}^{o} \mid \hat{\boldsymbol{\mu}}^{O}\left(\boldsymbol{x}_{t}^{I}\right), \hat{\boldsymbol{\Sigma}}^{o}\left(\boldsymbol{x}_{t}^{I}\right)\right) \\ \hat{\boldsymbol{\mu}}^{O}\left(\boldsymbol{x}_{t}^{I}\right) &=\sum_{k=1}^{K} h_{k}\left(\boldsymbol{x}_{t}^{I}\right) \hat{\boldsymbol{\mu}}_{k}^{O}\left(\boldsymbol{x}_{t}^{I}\right) \\ \hat{\boldsymbol{\Sigma}}^{O}\left(\boldsymbol{x}_{t}^{I}\right) &=\sum_{k=1}^{K} h_{k}\left(\boldsymbol{x}_{t}^{I}\right)\left(\hat{\boldsymbol{\Sigma}}_{k}^{o}+\hat{\boldsymbol{\mu}}_{k}^{O}\left(\boldsymbol{x}_{t}^{I}\right) \hat{\boldsymbol{\mu}}_{k}^{O}\left(\boldsymbol{x}_{t}^{I}\right)^{\top}\right)-\hat{\boldsymbol{\mu}}^{O}\left(\boldsymbol{x}_{t}^{I}\right) \hat{\boldsymbol{\mu}}^{O}\left(\boldsymbol{x}_{t}^{I}\right)^{\top} \end{aligned} P(xtoxtI)μ^O(xtI)Σ^O(xtI)=N(xtoμ^O(xtI),Σ^o(xtI))=k=1Khk(xtI)μ^kO(xtI)=k=1Khk(xtI)(Σ^ko+μ^kO(xtI)μ^kO(xtI))μ^O(xtI)μ^O(xtI)

在这里插入图片描述

高斯过程回归

高斯过程

高斯过程(Gaussian Process)指高斯分布与随机过程,是定义在连续域上的无限多个高斯随机变量组成的随机过程,即高斯过程是一个无限维的高斯分布
对于一个连续域 T T T(假设他是一个时间轴),如果我们在连续域上任选 n n n个时刻: t 1 , t 2 , t 3 , . . . , t n ∈ T t_1, t_2, t_3, ...,t_n \in T t1,t2,t3,...,tnT,使得获得的一个 n n n维向量 { ξ 1 , ξ 2 , ξ 3 , … , ξ n } \left\{\xi_{1}, \xi_{2}, \xi_{3}, \ldots, \xi_{n}\right\} {ξ1,ξ2,ξ3,,ξn}都满足其是一个 n n n维高斯分布,那么这个 { ξ t } \{\xi_t\} {ξt}就是一个高斯过程。

核函数

核函数以径向基函数为例,其中 s s s t t t表示任意两个时刻,核函数也称协方差函数。
k ( s , t ) = σ 2 exp ⁡ ( − ∥ s − t ∥ 2 2 l 2 ) k(s, t)=\sigma^{2} \exp \left(-\frac{\|s-t\|^{2}}{2 l^{2}}\right) k(s,t)=σ2exp(2l2st2)

高斯过程回归 GPR

μ ( t ) \mu(t) μ(t) k ( s , t ) k(s,t) k(s,t)来定义高斯过程,因为没有观测值,因此是一个先验,如果获取一组观测值后,如何修正高斯过程的均值函数与核函数,使之得到后验过程?

假设一个回归问题: x O = f ( x I ) + η \boldsymbol{x}^O = f(\boldsymbol{x}^I) +\boldsymbol{\eta} xO=f(xI)+η f f f是未知函数, η \eta η是高斯噪声,通过假设观测数据集作为输入-输出对 { x t I , x t O } t = 1 N \left\{\boldsymbol{x}_{t}^{\mathcal{I}}, \boldsymbol{x}_{t}^{\mathcal{O}}\right\}_{t=1}^{N} {xtI,xtO}t=1N,目的是评估函数 f f f的形式和相应的输出分布 x O \boldsymbol{x}^O xO, 即 x O ∗ ∼ P ( x O ∣ x I ∗ ) \boldsymbol{x}^{\mathcal{O} *} \sim \mathcal{P}\left(\boldsymbol{x}^{\mathcal{O}} \mid \boldsymbol{x}^{\mathcal{I} *}\right) xOP(xOxI)

协方差是高斯过程的核心,通过使用核函数 k ( x i I , x j I ) k(\boldsymbol{x}_i^I , \boldsymbol{x}_j^I) k(xiI,xjI)定义,提供两个样本 x i I \boldsymbol{x}_i^I xiI x j I \boldsymbol{x}_j^I xjI之间的协方差元素。对于一组输入 x I = { X 1 I , X 2 I , … , X N I } \boldsymbol{x}^I=\{X_1^I,X_2^I,…,X_N^I \} xI{X1IX2IXNI},协方差矩阵(也称为GM矩阵)被定义为:
K ( x I , x I ) = [ k ( x 1 I , x 1 I ) k ( x 1 I , x 2 I ) ⋯ k ( x 1 I , x N I ) k ( x 2 I , x 1 I ) k ( x 2 I , x 2 I ) ⋯ k ( x 2 I , x N I ) ⋮ ⋮ ⋱ ⋮ k ( x N I , x 1 I ) k ( x N I , x 2 I ) ⋯ k ( x N I , x N I ) ] \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right)=\left[\begin{array}{cccc} k\left(\boldsymbol{x}_{1}^{\mathcal{I}}, \boldsymbol{x}_{1}^{\mathcal{I}}\right) & k\left(\boldsymbol{x}_{1}^{\mathcal{I}}, \boldsymbol{x}_{2}^{\mathcal{I}}\right) & \cdots & k\left(\boldsymbol{x}_{1}^{\mathcal{I}}, \boldsymbol{x}_{N}^{\mathcal{I}}\right) \\ k\left(\boldsymbol{x}_{2}^{\mathcal{I}}, \boldsymbol{x}_{1}^{\mathcal{I}}\right) & k\left(\boldsymbol{x}_{2}^{\mathcal{I}}, \boldsymbol{x}_{2}^{\mathcal{I}}\right) & \cdots & k\left(\boldsymbol{x}_{2}^{\mathcal{I}}, \boldsymbol{x}_{N}^{\mathcal{I}}\right) \\ \vdots & \vdots & \ddots & \vdots \\ k\left(\boldsymbol{x}_{N}^{\mathcal{I}}, \boldsymbol{x}_{1}^{\mathcal{I}}\right) & k\left(\boldsymbol{x}_{N}^{\mathcal{I}}, \boldsymbol{x}_{2}^{\mathcal{I}}\right) & \cdots & k\left(\boldsymbol{x}_{N}^{\mathcal{I}}, \boldsymbol{x}_{N}^{\mathcal{I}}\right) \end{array}\right] K(xI,xI)=k(x1I,x1I)k(x2I,x1I)k(xNI,x1I)k(x1I,x2I)k(x2I,x2I)k(xNI,x2I)k(x1I,xNI)k(x2I,xNI)k(xNI,xNI)
即混合高斯分布服从 x O ∼ N ( μ ( x I ) , K ( x I , x I ) ) \boldsymbol{x}^O \sim \mathcal{N}\left(\boldsymbol{\mu}\left(\boldsymbol{x}^{\mathcal{I}}\right), \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right)\right) xON(μ(xI),K(xI,xI))

当存在与观测值相关的相关的噪声时, I I I是单位矩阵,即噪声仅添加在对角线上
K ~ ( x I , x I ) = K ( x I , x I ) + Θ G P I \tilde{\boldsymbol{K}}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right)=\boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right)+\Theta^{\mathrm{GP}} \boldsymbol{I} K~(xI,xI)=K(xI,xI)+ΘGPI

对于回归问题,我们感兴趣的是给定输入数据 x I ∗ \boldsymbol{x}^{I*} xI的后验分布 x O ∗ \boldsymbol{x}^{O*} xO,那么输入输出对 { x I , x O } \{ \boldsymbol{x}^I, \boldsymbol{x}^O\} {xI,xO}增加输入新的输入 x I ∗ \boldsymbol{x}^{I*} xI和输出 x O ∗ \boldsymbol{x}^{O*} xO的联合分布为:
[ x O x O ∗ ] ∼ N ( [ μ ( x I ) μ ( x I ∗ ) ] , [ K ( x I , x I ) K ( x I , x I ∗ ) K ( x I ∗ , x I ) K ( x I ∗ , x I ∗ ) ] ) \left[\begin{array}{c} \boldsymbol{x}^{\mathcal{O}} \\ \boldsymbol{x}^{\mathcal{O} *} \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} \boldsymbol{\mu}\left(\boldsymbol{x}^{\mathcal{I}}\right) \\ \boldsymbol{\mu}\left(\boldsymbol{x}^{\mathcal{I} *}\right) \end{array}\right],\left[\begin{array}{cc} \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right) & \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I} *}\right) \\ \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I} *}, \boldsymbol{x}^{\mathcal{I}}\right) & \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I} *}, \boldsymbol{x}^{\mathcal{I} *}\right) \end{array}\right]\right) [xOxO]N([μ(xI)μ(xI)],[K(xI,xI)K(xI,xI)K(xI,xI)K(xI,xI)])
利用条件高斯分布可以估计出输出 x O ∗ \boldsymbol{x}^{O*} xO的后验分布:
x O ∗ ∣ x O ∼ N ( μ ∗ , Σ ∗ ) \boldsymbol{x}^{\mathcal{O} *} \mid \boldsymbol{x}^{\mathcal{O}} \sim \mathcal{N}\left(\boldsymbol{\mu}^{*}, \boldsymbol{\Sigma}^{*}\right) xOxON(μ,Σ)

其中均值与协方差:
μ ∗ = μ ( x I ∗ ) + K ( x I ∗ , x I ) K ( x I , x I ) − 1 ( x O − μ ( x I ) ) Σ ∗ = K ( x I ∗ , x I ∗ ) − K ( x I ∗ , x I ) K ( x I , x I ) − 1 K ( x I , x I ∗ ) \begin{aligned} \boldsymbol{\mu}^{*} &=\boldsymbol{\mu}\left(\boldsymbol{x}^{\mathcal{I} *}\right)+\boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I} *}, \boldsymbol{x}^{\mathcal{I}}\right) \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right)^{-1}\left(\boldsymbol{x}^{\mathcal{O}}-\boldsymbol{\mu}\left(\boldsymbol{x}^{\mathcal{I}}\right)\right) \\ \boldsymbol{\Sigma}^{*} &=\boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I} *}, \boldsymbol{x}^{\mathcal{I} *}\right)-\boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I} *}, \boldsymbol{x}^{\mathcal{I}}\right) \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I}}\right)^{-1} \boldsymbol{K}\left(\boldsymbol{x}^{\mathcal{I}}, \boldsymbol{x}^{\mathcal{I} *}\right) \end{aligned} μΣ=μ(xI)+K(xI,xI)K(xI,xI)1(xOμ(xI))=K(xI,xI)K(xI,xI)K(xI,xI)1K(xI,xI)

也就是说,设置了高斯过程的先验参数,一旦拿到一些观测值,那么就可以对高斯过程的均值函数和核函数进行修正,得到一个修正后的后验高斯过程,而更新后验参数的信息就来自于观测值。

概率运动基元

ProMP(probabilistic movement primitive)模型假设每一条演示的轨迹 m ∈ { 1 , … , M } m \in \{1,…,M\} m{1M} 可以用 K K K个归一化RBF的加权和来近似
ξ m = Ψ w m + ϵ , ϵ ∼ N ( 0 , λ I ) \boldsymbol{\xi}_{m}=\boldsymbol{\Psi} \boldsymbol{w}_{m}+\boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0,\lambda \boldsymbol{I} ) ξm=Ψwm+ϵ,ϵN(0,λI)
基函数的定义为
Ψ = [ I ϕ 1 ( t 1 ) I ϕ 2 ( t 1 ) ⋯ I ϕ K ( t 1 ) I ϕ 1 ( t 2 ) I ϕ 2 ( t 2 ) ⋯ I ϕ K ( t 2 ) ⋮ ⋮ ⋱ ⋮ I ϕ 1 ( t T ) I ϕ 2 ( t T ) ⋯ I ϕ K ( t T ) ] \boldsymbol{\Psi}=\left[\begin{array}{cccc} \boldsymbol{I} \phi_{1}\left(t_{1}\right) & \boldsymbol{I} \phi_{2}\left(t_{1}\right) & \cdots & \boldsymbol{I} \phi_{K}\left(t_{1}\right) \\ \boldsymbol{I} \phi_{1}\left(t_{2}\right) & \boldsymbol{I} \phi_{2}\left(t_{2}\right) & \cdots & \boldsymbol{I} \phi_{K}\left(t_{2}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{I} \phi_{1}\left(t_{T}\right) & \boldsymbol{I} \phi_{2}\left(t_{T}\right) & \cdots & \boldsymbol{I} \phi_{K}\left(t_{T}\right) \end{array}\right] Ψ=Iϕ1(t1)Iϕ1(t2)Iϕ1(tT)Iϕ2(t1)Iϕ2(t2)Iϕ2(tT)IϕK(t1)IϕK(t2)IϕK(tT)
其中 Ψ ∈ R D T × D K \boldsymbol{\Psi} \in \mathbb{R}^{DT \times DK} ΨRDT×DK I ∈ R D I \in \mathbb{R}^{D} IRD,根据最小二乘法,求解最小标准差,向量 w m ∈ R D K \boldsymbol{w}_m \in \mathbb{R}^{DK} wmRDK可以被估计为
w m = ( Ψ ⊤ Ψ ) − 1 Ψ ⊤ ξ m \boldsymbol{w}_{m}=\left(\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}\right)^{-1} \boldsymbol{\Psi}^{\top} \boldsymbol{\xi}_{m} wm=(ΨΨ)1Ψξm

假设 { w m } m = 1 M \left\{\boldsymbol{w}_{m}\right\}_{m=1}^{M} {wm}m=1M服从高斯分布 N ( μ w , Σ w ) \mathcal{N}(\boldsymbol{\mu}^{\boldsymbol{w}} ,\boldsymbol{\Sigma}^{\boldsymbol{w}}) N(μw,Σw),则轨迹分布表示为
P ( ξ ) = ∫ P ( ξ ∣ w ) P ( w ) d w \mathcal{P}(\boldsymbol{\xi})=\int \mathcal{P}(\boldsymbol{\xi} \mid \boldsymbol{w}) \mathcal{P}(\boldsymbol{w}) d \boldsymbol{w} P(ξ)=P(ξw)P(w)dw
积分去掉权重系数 w \boldsymbol{w} w,从而得到轨迹的高斯分布
ξ ∼ N ( Ψ μ w , Ψ Σ w Ψ ⊤ + λ I ) \boldsymbol{\xi} \sim \mathcal{N}\left(\boldsymbol{\Psi} \boldsymbol{\mu}^{\boldsymbol{w}}, \boldsymbol{\Psi} \boldsymbol{\Sigma}^{w} \boldsymbol{\Psi}^{\top}+\lambda \boldsymbol{I}\right) ξN(Ψμw,ΨΣwΨ+λI)

ProMP 参数为 θ = { λ , μ k I , Σ k I , μ w , Σ w } \theta = \{\lambda, \mu_k^I , \Sigma_k^I , \boldsymbol{\mu}^{\boldsymbol{w}}, \boldsymbol{\Sigma}^{\boldsymbol{w}}\} θ={λ,μkI,ΣkI,μw,Σw},估计DK维的高斯分布,提供运动的紧凑表示,分离时间分量 Ψ \Psi Ψ和空间分量 N ( μ w , Σ w ) \mathcal{N}(\boldsymbol{\mu}^{\boldsymbol{w}} ,\boldsymbol{\Sigma}^{\boldsymbol{w}}) N(μw,Σw)。与DMP类似,ProMP可以与GMM/GMR结合,作为联合分布问题自动估计基函数的参数和泛化,而不是人工指定它们。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值