三、规划控制——车辆横向控制(2)

本文主要学习车辆横向控制的相关理论知识——现代控制理论。


前言

本文将继续深入研究自动驾驶车辆在横向上的现代控制理论相关理论知识。


一、控制系统稳定性(SISO)

它是指控制系统受到干扰偏离了原来的平衡状态,当扰动消失之后,仍然可以恢复到原有平衡状态的一种能力。也就是说当一个受控体在一个平衡状态下正常工作,遇到扰动之后,在控制器的作用下,如果再也没有办法在足够的精度内回到原有的平衡状态,那么这个物体的平衡状态是不稳定的。

二、BIBO的局限性(Classical Control)

经典控制理论的稳定性(BIBO):主要看外部的稳定性,与内部没有关系。
我们举一个例子看一下BIBO(Bounded-input-bounded-output)的局限性:
在这里插入图片描述
如图所示,它的传递函数为:
在这里插入图片描述
它的极点为1,大小0,则它是一个输入输出不稳定的系统。
我们可以设计一个控制器(它的零点等于1):
在这里插入图片描述
这样我们我们可以得到系统的传递函数:
在这里插入图片描述
它的极点变成了-1,但是它真的稳定吗?

我们可以写出传递函数的ODE(常微分方程):

在这里插入图片描述
加上0初始条件:
在这里插入图片描述
把U(S)替换:
在这里插入图片描述
拉普拉斯反变换得到:

在这里插入图片描述
我们可以看到只有第三项是收敛的,其余两项都有t,且随着t的增大,指数增大,所以我们的系统是不稳定的。除非我们的y(0)和u(0)等于0的时候,前两项都会消掉,我们的系统变稳定。
所以,我们验证了系统只有在0初条件下才是稳定的。

  1. 系统内部的状态要比系统外部的状态要复杂,只通过传递函数是不能表达系统内部的状态。
  2. 我们提出了状态空间来解决此问题。

三、现代控制理论(Modern Control Theory)

通过上述例子,我们发现经典控制理论是有局限性的,而现代控制理论可以解决此问题。

3.1 现代控制理论

现代控制理论是建立在状态空间上的一种控制理论,也就是说他对系统的分析和设计主要通过系统的状态变量来描述进行的。其基本方法在时域内进行。
现代控制理论比经典控制理论所要处理的问题要广泛的多。它不仅包括线性控制系统还包括非线性控制系统、定常系统、时变系统、单变量系统、多变量系统。它采用的方法和算法适合于在计算机上进行。

3.2 状态空间等式

一般我们把状态空间下的系统描述成以下形式:
在这里插入图片描述
其中:A是状态矩阵,B是控制矩阵,C是输出矩阵,D是前馈矩阵。
经过拉普拉斯变换(0初条件):
在这里插入图片描述
我们可以得到传递函数:在这里插入图片描述
假设我们把SI-A的逆矩阵写成分子/分母的形式,如图:
在这里插入图片描述
则我们可以写成:

在这里插入图片描述
我们将分子写成Q(s),传递函数是SISO系统,可得:

在这里插入图片描述
如图可知,传递函数的极点正是A矩阵的特征值,也就是说传递函数的极点就是我们状态空间的特征值。

3.3 线性状态空间方程构建

举例如下:
在这里插入图片描述
对于现代控制理论,我们进行分析时一般使用状态空间方程的A矩阵也就是状态系统矩阵进行分析。

结论:
(1)A矩阵所有的特征值都是具有负实部的时候,我们就说这个系统是稳定的,这种稳定性称为内稳定。
(2)内稳定的矩阵一定是外稳定的(状态空间方程——传递函数),反之不成立。

3.4 系统稳定性判断

举例系统如下图所示:
在这里插入图片描述
(1)A矩阵特征值为1,-2,则该系统不是内稳定状态。
(2)看外稳定需要将系统转换为传递函数,利用上述G(s)公式进行计算,
在这里插入图片描述
则它的极点时负的s=-2,是一个外稳定系统。

所以,再次证实了外稳定的系统不一定是内稳定的。

3.5 理论特性(Controllability and Observability)

可控性和可观性是状态空间研究中两个独特的性质,这两个特性是由E.G.Gilbert和R.F.Kalman在1950年代提出来的。
这两个特性能够解释上述说到的零极点抵消也不是一种可取的办法。

3.5.1 可控性(Controllability)

反应系统输入对状态的一种制约能力,就是说系统的状态变量能不能完全由输入进行影响和控制,由任意的起点到达终点。
定义:在线性定常系统中,如果存在一个输入,在有限的时间内,使我们的系统从任意的初始状态到任意的其它状态,那么我们就说这个系统是可控的,否则就是不可控的。
通常实际情况下,我们通过判断可控性矩阵U来判断系统是否可控:

在这里插入图片描述
举例:
在这里插入图片描述
其中,x1和x2是小车的绝对位置,x3,x4为小车的速度。根据牛顿第二定律可知:
在这里插入图片描述
根据状态方程可知:
在这里插入图片描述
根据可控性矩阵B可知:
在这里插入图片描述
可以看出,U矩阵不是行满秩,则这个系统不是可控的。

如果这个可控性矩阵U是行满秩,则这个系统是能控可控的。
解决问题:
(1) 改变输入的量u使得系统在t时刻达到期望状态(让我们的系统状态去到任何地方)。
(2)对于任何系统,我们可以设计出控制器去追踪一条轨迹。

3.5.2 可观性(Observability)

在线性时不变系统中,任何未知的初始系统状态都能够通过有限的时间内可知的输入和观察到的输出推导出,那这个系统就是可观的。
通常实际情况下,我们通过判断可观性矩阵O是否为列满秩来判断系统是否可控。
在这里插入图片描述
举例:
设计一个简单的系统:
在这里插入图片描述
利用状态空间方程:
在这里插入图片描述
可知矩阵:
在这里插入图片描述
利用O矩阵:
在这里插入图片描述
可看出,O矩阵不是列满秩,则这个系统不是可观的。

解决问题:
(1)通过对输出的测量推导出系统的初始状态。
(2)通过测量输出追踪到系统任意时刻的状态。

四、理论对比

在这里插入图片描述
经典控制理论的前提条件:

  1. 经典控制理论适用于单输入单输出的系统
  2. 系统是线性的
  3. 系统是定常的
  4. 经典控制理论主要是复频域分析方法,主要基于传递函数复频域的表现形式来分析
  5. 经典控制理论使用的工具是拉式变换,只能求解单变量线性微分方程
  6. 经典控制理论稳定性分析主要是靠零极点的关系研究系统稳定性
  7. 经典控制理论研究控制量频域性质,如带宽等

现代控制理论适用面更广一些:

  1. 现代控制理论适用于多输入多输出的系统
  2. 系统可以是非线性的
  3. 系统可以是非定常的
  4. 现代控制理论主要是时域的分析方法,也会用到频域的方法
  5. 现代控制理论使用的工具是状态空间方程,利用矩阵求解,可以是多变量微分方程
  6. 现代控制理论稳定性分析主要是靠微分方程对应A矩阵特征值来研究系统稳定性
  7. 现代控制理论研究系统状态量时域的变化,没有办法研究频域的特性

从上述可以看出
(1)现代控制理论的研究目标包括了经典控制理论

(2)现代控制理论和经典控制理论研究对象是一样的,本质上都是求解微分方程

(3)经典控制理论主要用到传递函数,而现代控制理论主要用到状态空间

(4)经典控制理论比较难控制系统状态量在时域的变化,而现代控制理论直接研究系统状态量的时域变化的轨迹

(5)经典控制理论更偏向于频域,而现代控制理论偏向于时域


总结

本文主要是对于自动驾驶规划控制学习中的横向控制理论知识进行学习,主要介绍了横向运动学中现在控制的理论知识,空间状态方程的理论以及其具有的可控性和可观性的特性解析,最后对比了经典控制理论和现在控制理论。这篇文章希望可以对想要学习自动驾驶规划控制方向的同学们有一定的帮助。
喜欢的朋友们动动小手点个关注,我会定期分享我的一些知识总结和心得体会,感谢大家!

### 实现车辆横向控制算法及仿真 #### 车辆横向控制简介 车辆横向控制系统旨在使汽车能够沿着预定路径行驶,保持期望的轨迹。这通常涉及到传感器数据处理、控制器设计以及车辆动态响应分析。对于自动驾驶应用而言,精确的横向控制至关重要。 #### MATLAB中的Simulink平台用于建模与仿真 在MATLAB环境中,Simulink提供了强大的图形化界面来构建复杂的系统模型并执行实时仿真。针对车辆横向控制问题,可以通过创建包含车辆动力学模块、环境感知接口、决策逻辑单元以及反馈调节机制在内的综合框架来进行深入探究[^1]。 #### 控制器的选择——以Stanley为例 一种广泛应用于无人驾驶领域的有效路径跟随算法是Stanley法。此方法基于前轮转向角调整实现对目标路线的良好追踪性能;同时具备较强的鲁棒性,在面对外界干扰时仍能维持稳定操作。利用MATLAB编写相应函数可方便地集成至整体架构之中[^3]。 ```matlab function delta = stanleyController(x, y, psi, v, ref_path) % 输入参数解释: % x,y - 当前位置坐标 % psi - 行驶方向角度(弧度) % v - 线速度(m/s) % ref_path - 参考路径点集 {xi,yi} k_e = 0.7; % 横向误差增益系数 k_s = 0.8/v; % 前视距离比例因子 [~,idx] = min(sqrt((ref_path(:,1)-x).^2+(ref_path(:,2)-y).^2));% 寻找最近路点索引 alpha = atan2(ref_path(idx,2)-y , ref_path(idx,1)-x); % 计算航向偏差角 cte = sin(alpha)*(ref_path(idx,1)-x)+cos(alpha)*(ref_path(idx,2)-y);% 获取横摆位移差值 delta = atan(cte*k_e+k_s*sin(psi- **车辆本体**:定义质量分布、惯量矩等物理属性; - **轮胎特性**:描述摩擦力变化规律及其影响因素; - **外部扰动源模拟**:风阻效应、路面不平顺情况下的随机振动等。 上述要素共同作用于整个体系内形成闭合环路,从而确保最终输出结果贴近实际工况需求。借助内置工具箱(Vehicle Dynamics Blockset),用户可以直接调用预设好的子组件快速完成组装工作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值