一、BCH公式与近似模型
1、BCH公式
这一节,我们研究在 S O ( 3 ) SO(3) SO(3)上两个矩阵相乘时其在 s o ( 3 ) so(3) so(3)上对应的李代数会如何变化。
为了便于讨论,我们将指数映射:
R 1 R 2 = exp ( ϕ 1 ∧ ) exp ( ϕ 2 ∧ ) = exp ( f ( ϕ 1 ∧ , ϕ 2 ∧ ) ) {
{\rm{R}}_1}{
{\rm{R}}_2}{\rm{ = }}\exp (\phi _1^\wedge)\exp (\phi _2^\wedge) = \exp (f(\phi _1^\wedge,\phi _2^\wedge)) R1R2=exp(ϕ1∧)exp(ϕ2∧)=exp(f(ϕ1∧,ϕ2∧))写成对数映射形式:
ln ( R 1 R 2 ) = ln ( exp ( ϕ 1 ∧ ) exp ( ϕ 2 ∧ ) ) = f ( ϕ 1 ∧ , ϕ 2 ∧ ) \ln ({
{\rm{R}}_1}{
{\rm{R}}_2}) = \ln (\exp (\phi _1^\wedge)\exp (\phi _2^\wedge)) = f(\phi _1^\wedge,\phi _2^\wedge) ln(R1R2)=ln(exp(ϕ1∧)exp(ϕ2∧))=f(ϕ1∧,ϕ2∧)可进一步改写成:
ln ( T 1 T 2 ) ∨ = ln ( exp ( ϕ 1 ∧ ) exp ( ϕ 2 ∧ ) ) ∨ = f ( ϕ 1 , ϕ 2 ) \ln {({
{\rm{T}}_1}{
{\rm{T}}_2})^ \vee } = \ln {(\exp (\phi _1^ \wedge )\exp (\phi _2^ \wedge ))^ \vee } = f({\phi _1},{\phi _2}) ln(T1T2)∨=ln(exp(ϕ1∧)exp(ϕ2∧))∨=f(ϕ1,ϕ2)记 ϕ 1 ∧ = A ,