第四讲-第三节-李代数求导与扰动模型

本文详细介绍了BCH公式及其在SO(3)和SE(3)上的近似模型,探讨了李代数求导在机器人位姿优化中的意义。通过对李群乘法和李代数加法的关系分析,阐述了李代数和扰动模型在解决优化问题时的作用,特别强调了在视觉SLAM中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、BCH公式与近似模型

1、BCH公式

这一节,我们研究在 S O ( 3 ) SO(3) SO(3)上两个矩阵相乘时其在 s o ( 3 ) so(3) so(3)上对应的李代数会如何变化。
为了便于讨论,我们将指数映射:
R 1 R 2 = exp ⁡ ( ϕ 1 ∧ ) exp ⁡ ( ϕ 2 ∧ ) = exp ⁡ ( f ( ϕ 1 ∧ , ϕ 2 ∧ ) ) { {\rm{R}}_1}{ {\rm{R}}_2}{\rm{ = }}\exp (\phi _1^\wedge)\exp (\phi _2^\wedge) = \exp (f(\phi _1^\wedge,\phi _2^\wedge)) R1R2=exp(ϕ1)exp(ϕ2)=exp(f(ϕ1,ϕ2))写成对数映射形式:
ln ⁡ ( R 1 R 2 ) = ln ⁡ ( exp ⁡ ( ϕ 1 ∧ ) exp ⁡ ( ϕ 2 ∧ ) ) = f ( ϕ 1 ∧ , ϕ 2 ∧ ) \ln ({ {\rm{R}}_1}{ {\rm{R}}_2}) = \ln (\exp (\phi _1^\wedge)\exp (\phi _2^\wedge)) = f(\phi _1^\wedge,\phi _2^\wedge) ln(R1R2)=ln(exp(ϕ1)exp(ϕ2))=f(ϕ1,ϕ2)可进一步改写成:
ln ⁡ ( T 1 T 2 ) ∨ = ln ⁡ ( exp ⁡ ( ϕ 1 ∧ ) exp ⁡ ( ϕ 2 ∧ ) ) ∨ = f ( ϕ 1 , ϕ 2 ) \ln {({ {\rm{T}}_1}{ {\rm{T}}_2})^ \vee } = \ln {(\exp (\phi _1^ \wedge )\exp (\phi _2^ \wedge ))^ \vee } = f({\phi _1},{\phi _2}) ln(T1T2)=ln(exp(ϕ1)exp(ϕ2))=f(ϕ1,ϕ2) ϕ 1 ∧ = A ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值