题目
图 1 所示为一个平面 2R 机器人,以及机器人广义坐标和关节力矩的定义。机器人 2 个连杆的质量均匀分布,长度都为 ,质量都为 。末端执行器笛卡尔坐标为 。
以上述机器人为对象,完成如下任务:
1. 求机器人连杆绕其质心的转动惯量。
2. 求机器人的 D-H 参数表,根据 D-H 参数表写出变换矩阵 、、 矩阵;再用指数积方法计算变换矩阵 ,并和 D-H 方法计算结果作对比。
3. 用矢量积方法、微分变换法、指数积方法中的任一种计算机器人的速度雅可比矩阵。
4. 以图示 和 为广义坐标, 和 为关节驱动力矩,求机器人的动力学方程,给出推导过程,并验证惯性矩阵和机器人动能的关系。
5. 利用 MATLAB 编程仿真上述平面 2R 机器人的动力学系统,完成如下任务:
(1) 当机器人初始姿态为 , 时,分别画出关节力矩 和 时,机器人的关节角度、角速度、角加速度以及末端执行器笛卡尔坐标的轨迹图(步长0.01s,时长2s的仿真)。
(2) 当机器人初始姿态为 ,关节力矩 时,画出机器人的关节角度、角速度、角加速度以及末端执行器笛卡尔坐标的轨迹图;以及画出机器人速度雅可比矩阵的行列式值的时间轨迹图,分析机器人靠近奇异位形的程度(步长0.01s,时长2s的仿真)。
(3) 当机器人初始姿态为 ,末端执行器在笛卡尔空间的线速度指令为(常数),仿真时间步长0.01s,仿真时间长度6s。利用计算力矩控制规则实现机器人末端执行器的线速度指令运动,画出机器人的关节力矩、角度、角速度、角加速度、末端执行器笛卡尔坐标和线速度的时间轨迹图;以及画出机器人雅可比矩阵的行列式值的时间轨迹图,分析机器人靠近奇异位形的程度。
解答
计算转动惯量
问题:求机器人连杆绕其质心的转动惯量。
单个连杆模型如图 2 所示,其绕质心的转动惯量计算方法如下:
所以 。
两种方法计算变换矩阵
问题:求机器人的 D-H 参数表,根据 D-H 参数表写出变换矩阵 、、 矩阵;再用指数积方法计算变换矩阵 ,并和 D-H 方法计算结果作对比。
D-H法
首先对机器人进行如下图 3 的建系。
各关节轴线垂直于平面,规定 轴与关节 轴线重合,且方向为从纸面向外;轴线间的公垂线 沿实体连杆方向,规定 轴与公垂线 重合,方向从关节 指向关节 ;根据右手法则确定 轴。规定与世界坐标系O-XY重合,末端坐标系 与 仅有固定的平移变换。
机器人的 D-H 参数如下表 1 所示。
| 关节变量取值范围 | ||||
1 | |||||
2 | |||||
3 | |
| - |
其中 ,。建立变换矩阵如下所示:
所以,
指数积方法
两个关节轴线的线矢量方向和取关节上的一点如下:
查表得:
所以,
可以看到,指数积方法计算的结果 与 D-H 方法求解的结果 相等,即:
末端执行器变换矩阵
未完待续...