本文接自上一篇《第四章 不定积分(一)》,继续记录总习题四。
目录
- 总习题四
- 4.求下列不定积分(其中 a a a、 b b b为常数):
- (7) ∫ tan 4 x d x ; \displaystyle\int\tan^4x\mathrm{d}x; ∫tan4xdx;
- (10) ∫ a + x a − x d x ; \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x; ∫a−xa+xdx;
- (11) ∫ d x x ( x + 1 ) ; \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}; ∫x(x+1)dx;
- (15) ∫ d x x 2 x 2 − 1 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}; ∫x2x2−1dx;
- (16) ∫ d x ( a 2 − x 2 ) 5 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}; ∫(a2−x2)25dx;
- (17) ∫ d x x 4 1 + x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}; ∫x41+x2dx;
- (21) ∫ arctan x d x ; \displaystyle\int\arctan\sqrt{x}\mathrm{d}x; ∫arctanxdx;
- (22) ∫ 1 + cos x sin x d x ; \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x; ∫sinx1+cosxdx;
- (23) ∫ x 3 ( 1 + x 8 ) 2 d x ; \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x; ∫(1+x8)2x3dx;
- (26) ∫ sin x 1 + sin x d x ; \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x; ∫1+sinxsinxdx;
- (27) ∫ x + sin x 1 + cos x d x ; \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x; ∫1+cosxx+sinxdx;
- (28) ∫ e sin x x cos 3 x − sin x cos 2 x d x ; \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x; ∫esinxcos2xxcos3x−sinxdx;
- (31) ∫ e 3 x + e x e 4 x − e 2 x + 1 d x ; \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x; ∫e4x−e2x+1e3x+exdx;
- (33) ∫ ln 2 ( x + 1 + x 2 ) d x ; \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x; ∫ln2(x+1+x2)dx;
- (34) ∫ ln x ( 1 + x 2 ) 3 2 d x ; \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}\mathrm{d}x; ∫(1+x2)23lnxdx;
- (35) ∫ 1 − x 2 arcsin x d x ; \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x; ∫1−x2arcsinxdx;
- (36) ∫ x 3 arccos x 1 − x 2 d x ; \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x; ∫1−x2x3arccosxdx;
- (38) ∫ d x sin 3 x cos x ; \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}; ∫sin3xcosxdx;
- (39) ∫ d x ( 2 + cos x ) sin x ; \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}; ∫(2+cosx)sinxdx;
- (40) ∫ sin x cos x sin x + cos x d x ; \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x; ∫sinx+cosxsinxcosxdx;
- 写在最后
总习题四
4.求下列不定积分(其中 a a a、 b b b为常数):
(7) ∫ tan 4 x d x ; \displaystyle\int\tan^4x\mathrm{d}x; ∫tan4xdx;
解
∫
tan
4
x
d
x
=
∫
tan
2
x
(
sec
2
x
−
1
)
d
x
=
∫
tan
2
x
d
(
tan
x
)
−
∫
(
sec
2
x
−
1
)
d
x
=
1
3
tan
3
x
−
tan
x
+
x
+
C
.
\begin{aligned} \displaystyle\int\tan^4x\mathrm{d}x&=\displaystyle\int\tan^2x(\sec^2x-1)\mathrm{d}x\\ &=\displaystyle\int\tan^2x\mathrm{d}(\tan x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\cfrac{1}{3}\tan^3x-\tan x+x+C. \end{aligned}
∫tan4xdx=∫tan2x(sec2x−1)dx=∫tan2xd(tanx)−∫(sec2x−1)dx=31tan3x−tanx+x+C.
(这道题主要利用三角变换公式进行计算)
(10) ∫ a + x a − x d x ; \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x; ∫a−xa+xdx;
解一
∫
a
+
x
a
−
x
d
x
=
∫
a
+
x
a
2
−
x
2
d
x
=
a
∫
1
1
−
(
x
a
)
2
d
(
x
a
)
−
1
2
∫
d
(
a
2
−
x
2
)
a
2
−
x
2
=
a
arcsin
x
a
−
a
2
−
x
2
+
C
.
\begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int\cfrac{a+x}{\sqrt{a^2-x^2}}\mathrm{d}x=a\displaystyle\int\cfrac{1}{\sqrt{1-\left(\cfrac{x}{a}\right)^2}}\mathrm{d}\left(\cfrac{x}{a}\right)-\cfrac{1}{2}\displaystyle\int\cfrac{\mathrm{d}(a^2-x^2)}{\sqrt{a^2-x^2}}\\ &=a\arcsin\cfrac{x}{a}-\sqrt{a^2-x^2}+C. \end{aligned}
∫a−xa+xdx=∫a2−x2a+xdx=a∫1−(ax)21d(ax)−21∫a2−x2d(a2−x2)=aarcsinax−a2−x2+C.
解二 令
u
=
a
+
x
a
−
x
u=\sqrt{\cfrac{a+x}{a-x}}
u=a−xa+x,即
x
=
a
u
2
−
1
u
2
+
1
x=a\cfrac{u^2-1}{u^2+1}
x=au2+1u2−1,则
∫
a
+
x
a
−
x
d
x
=
∫
u
⋅
4
a
u
(
1
+
u
2
)
2
d
u
=
∫
−
2
a
u
d
(
1
1
+
u
2
)
=
−
2
a
u
1
+
u
2
+
∫
2
a
1
+
u
2
d
u
=
−
2
a
u
1
+
u
2
+
2
a
arctan
u
+
C
=
(
x
−
a
)
a
+
x
a
−
x
+
2
a
arctan
a
+
x
a
−
x
+
C
.
\begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int u\cdot\cfrac{4au}{(1+u^2)^2}\mathrm{d}u=\displaystyle\int-2au\mathrm{d}\left(\cfrac{1}{1+u^2}\right)\\ &=-\cfrac{2au}{1+u^2}+\displaystyle\int\cfrac{2a}{1+u^2}\mathrm{d}u\\ &=-\cfrac{2au}{1+u^2}+2a\arctan u+C\\ &=(x-a)\sqrt{\cfrac{a+x}{a-x}}+2a\arctan\sqrt{\cfrac{a+x}{a-x}}+C. \end{aligned}
∫a−xa+xdx=∫u⋅(1+u2)24audu=∫−2aud(1+u21)=−1+u22au+∫1+u22adu=−1+u22au+2aarctanu+C=(x−a)a−xa+x+2aarctana−xa+x+C.
(这道题可以利用换元积分或进行分式变换求解)
(11) ∫ d x x ( x + 1 ) ; \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}; ∫x(x+1)dx;
解一
∫
d
x
x
(
x
+
1
)
=
∫
d
x
(
x
+
1
2
)
2
−
(
1
2
)
2
=
x
=
−
1
2
+
1
2
sec
u
∫
sec
u
d
u
=
ln
∣
sec
u
+
tan
u
∣
+
C
=
ln
∣
2
x
+
1
+
2
x
(
x
+
1
)
∣
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{\left(x+\cfrac{1}{2}\right)^2-\left(\cfrac{1}{2}\right)^2}}\\ &\xlongequal{x=-\cfrac{1}{2}+\cfrac{1}{2}\sec u}\displaystyle\int\sec u\mathrm{d}u=\ln|\sec u+\tan u|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned}
∫x(x+1)dx=∫(x+21)2−(21)2dxx=−21+21secu∫secudu=ln∣secu+tanu∣+C=ln∣2x+1+2x(x+1)∣+C.
解二 当
x
>
0
x>0
x>0时,因为
1
x
(
x
+
1
)
=
1
x
x
1
+
x
\cfrac{1}{\sqrt{x(x+1)}}=\cfrac{1}{x}\sqrt{\cfrac{x}{1+x}}
x(x+1)1=x11+xx,故令
u
=
x
1
+
x
u=\sqrt{\cfrac{x}{1+x}}
u=1+xx,即
x
=
u
2
1
−
u
2
x=\cfrac{u^2}{1-u^2}
x=1−u2u2,则
∫
d
x
x
(
x
+
1
)
=
∫
2
1
−
u
2
d
u
=
∫
(
1
1
−
u
+
1
1
+
u
)
d
u
=
ln
∣
1
+
u
1
−
u
∣
+
C
=
ln
∣
1
+
x
+
x
1
+
x
−
x
∣
+
C
=
ln
∣
2
x
+
1
+
2
x
(
x
+
1
)
∣
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{2}{1-u^2}\mathrm{d}u=\displaystyle\int\left(\cfrac{1}{1-u}+\cfrac{1}{1+u}\right)\mathrm{d}u\\ &=\ln|\cfrac{1+u}{1-u}|+C=\ln\left|\cfrac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}-\sqrt{x}}\right|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned}
∫x(x+1)dx=∫1−u22du=∫(1−u1+1+u1)du=ln∣1−u1+u∣+C=ln∣∣∣∣∣1+x−x1+x+x∣∣∣∣∣+C=ln∣2x+1+2x(x+1)∣+C.
当
x
<
−
1
x<-1
x<−1时,同样可得
∫
d
x
x
(
x
+
1
)
=
ln
∣
2
x
+
1
+
2
x
(
x
+
1
)
∣
+
C
\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}=\ln|2x+1+2\sqrt{x(x+1)}|+C
∫x(x+1)dx=ln∣2x+1+2x(x+1)∣+C。(这道题主要用分段或配方进行计算)
(15) ∫ d x x 2 x 2 − 1 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}; ∫x2x2−1dx;
解 ∫ d x x 2 x 2 − 1 = x = 1 u − ∫ u d u 1 − u 2 = 1 − u 2 + C = x 2 − 1 x + C , \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}\xlongequal{x=\cfrac{1}{u}}-\displaystyle\int\cfrac{u\mathrm{d}u}{\sqrt{1-u^2}}=\sqrt{1-u^2}+C=\cfrac{\sqrt{x^2-1}}{x}+C, ∫x2x2−1dxx=u1−∫1−u2udu=1−u2+C=xx2−1+C,易知当 x < 0 x<0 x<0和 x > 0 x>0 x>0时的结果相同。(这道题主要利用换元积分计算)
(16) ∫ d x ( a 2 − x 2 ) 5 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}; ∫(a2−x2)25dx;
解 设
x
=
a
sin
u
(
−
π
2
<
u
<
π
2
)
x=a\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right)
x=asinu(−2π<u<2π),则
a
2
−
x
2
=
a
cos
u
,
d
x
=
a
cos
u
d
u
\sqrt{a^2-x^2}=a\cos u,\mathrm{d}x=a\cos u\mathrm{d}u
a2−x2=acosu,dx=acosudu,于是
∫
d
x
(
a
2
−
x
2
)
5
2
=
1
a
4
∫
sec
4
u
d
u
=
1
a
4
∫
(
tan
2
u
+
1
)
d
(
tan
u
)
=
tan
3
u
3
a
4
+
tan
u
a
4
+
C
=
1
3
a
4
[
x
3
(
a
2
−
x
2
)
3
+
3
x
a
2
−
x
2
]
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}&=\cfrac{1}{a^4}\displaystyle\int\sec^4u\mathrm{d}u=\cfrac{1}{a^4}\displaystyle\int(\tan^2u+1)\mathrm{d}(\tan u)\\ &=\cfrac{\tan^3u}{3a^4}+\cfrac{\tan u}{a^4}+C\\ &=\cfrac{1}{3a^4}\left[\cfrac{x^3}{\sqrt{(a^2-x^2)^3}}+\cfrac{3x}{\sqrt{a^2-x^2}}\right]+C. \end{aligned}
∫(a2−x2)25dx=a41∫sec4udu=a41∫(tan2u+1)d(tanu)=3a4tan3u+a4tanu+C=3a41[(a2−x2)3x3+a2−x23x]+C.
(这道题主要利用三角函数进行替换)
(17) ∫ d x x 4 1 + x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}; ∫x41+x2dx;
解
∫
d
x
x
4
1
+
x
2
=
x
=
1
u
∫
−
u
3
d
u
1
+
u
2
=
−
∫
(
u
1
+
u
2
−
u
1
+
u
2
)
d
u
=
−
1
3
(
1
+
u
2
)
3
2
+
1
+
u
2
+
C
=
−
1
3
(
1
+
x
2
)
3
x
3
+
1
+
x
2
x
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{-u^3\mathrm{d}u}{\sqrt{1+u^2}}=-\displaystyle\int\left(u\sqrt{1+u^2}-\cfrac{u}{\sqrt{1+u^2}}\right)\mathrm{d}u\\ &=-\cfrac{1}{3}(1+u^2)^{\frac{3}{2}}+\sqrt{1+u^2}+C\\ &=-\cfrac{1}{3}\cfrac{\sqrt{(1+x^2)^3}}{x^3}+\cfrac{\sqrt{1+x^2}}{x}+C. \end{aligned}
∫x41+x2dxx=u1∫1+u2−u3du=−∫(u1+u2−1+u2u)du=−31(1+u2)23+1+u2+C=−31x3(1+x2)3+x1+x2+C.
易知当
x
<
0
x<0
x<0和
x
>
0
x>0
x>0时结果相同。(这道题用倒数换元再拆分因式计算)
(21) ∫ arctan x d x ; \displaystyle\int\arctan\sqrt{x}\mathrm{d}x; ∫arctanxdx;
解
∫
arctan
x
d
x
=
∫
arctan
x
d
(
1
+
x
)
=
(
1
+
x
)
arctan
x
−
∫
1
2
x
d
x
=
(
1
+
x
)
arctan
x
−
x
+
C
.
\begin{aligned} \displaystyle\int\arctan\sqrt{x}\mathrm{d}x&=\displaystyle\int\arctan\sqrt{x}\mathrm{d}(1+x)=(1+x)\arctan\sqrt{x}-\displaystyle\int\cfrac{1}{2\sqrt{x}}\mathrm{d}x\\ &=(1+x)\arctan\sqrt{x}-\sqrt{x}+C. \end{aligned}
∫arctanxdx=∫arctanxd(1+x)=(1+x)arctanx−∫2x1dx=(1+x)arctanx−x+C.
(这道题在积分时凑出一个因式简化计算)
(22) ∫ 1 + cos x sin x d x ; \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x; ∫sinx1+cosxdx;
解
∫
1
+
cos
x
sin
x
d
x
=
∫
2
∣
cos
x
2
∣
2
sin
x
2
cos
x
2
d
x
=
±
2
∫
csc
x
2
d
(
x
2
)
=
±
2
ln
∣
csc
x
2
−
cot
x
2
∣
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sqrt{2}|\cos\cfrac{x}{2}|}{2\sin\cfrac{x}{2}\cos\cfrac{x}{2}}\mathrm{d}x=\pm\sqrt{2}\displaystyle\int\csc\cfrac{x}{2}\mathrm{d}\left(\cfrac{x}{2}\right)\\ &=\pm\sqrt{2}\ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|+C. \end{aligned}
∫sinx1+cosxdx=∫2sin2xcos2x2∣cos2x∣dx=±2∫csc2xd(2x)=±2ln∣csc2x−cot2x∣+C.
上式当
cos
x
2
>
0
\cos\cfrac{x}{2}>0
cos2x>0时取正,当
cos
x
2
<
0
\cos\cfrac{x}{2}<0
cos2x<0时取负。
当
cos
x
2
>
0
\cos\cfrac{x}{2}>0
cos2x>0时,
ln
∣
csc
x
2
−
cot
x
2
∣
=
ln
1
−
cos
x
2
∣
sin
x
2
∣
=
ln
(
∣
csc
x
2
∣
−
∣
cot
x
2
∣
)
.
\ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right).
ln∣csc2x−cot2x∣=ln∣sin2x∣1−cos2x=ln(∣csc2x∣−∣cot2x∣).
当
cos
x
2
<
0
\cos\cfrac{x}{2}<0
cos2x<0时,
ln
∣
csc
x
2
−
cot
x
2
∣
=
ln
1
−
cos
x
2
∣
sin
x
2
∣
=
ln
(
∣
csc
x
2
∣
+
∣
cot
x
2
∣
)
=
−
ln
(
∣
csc
x
2
∣
−
∣
cot
x
2
∣
)
.
\ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|+|\cot\cfrac{x}{2}|\right)=-\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right).
ln∣csc2x−cot2x∣=ln∣sin2x∣1−cos2x=ln(∣csc2x∣+∣cot2x∣)=−ln(∣csc2x∣−∣cot2x∣).
因此有
∫
1
+
cos
x
sin
x
d
x
=
2
ln
(
∣
csc
x
2
∣
−
∣
cot
x
2
∣
)
+
C
.
\displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x=\sqrt{2}\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right)+C.
∫sinx1+cosxdx=2ln(∣csc2x∣−∣cot2x∣)+C.
(这道题主要利用了分段求解)
(23) ∫ x 3 ( 1 + x 8 ) 2 d x ; \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x; ∫(1+x8)2x3dx;
解
∫
x
3
(
1
+
x
8
)
2
d
x
=
1
4
∫
1
(
1
+
x
8
)
2
d
(
x
4
)
=
u
=
x
4
1
4
∫
1
(
1
+
u
2
)
2
d
u
.
\displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x=\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+x^8)^2}\mathrm{d}(x^4)\xlongequal{u=x^4}\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+u^2)^2}\mathrm{d}u.
∫(1+x8)2x3dx=41∫(1+x8)21d(x4)u=x441∫(1+u2)21du.
设
u
=
tan
t
(
−
π
2
<
t
<
π
2
)
u=\tan t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right)
u=tant(−2π<t<2π),则
1
+
u
2
=
sec
2
t
,
d
u
=
sec
2
t
d
t
1+u^2=\sec^2t,\mathrm{d}u=\sec^2t\mathrm{d}t
1+u2=sec2t,du=sec2tdt,于是
原式
=
1
4
∫
cos
2
t
d
t
=
2
t
+
sin
2
t
16
+
C
=
arctan
x
4
8
+
x
4
8
(
1
+
x
8
)
+
C
.
\begin{aligned} \text{原式}&=\cfrac{1}{4}\displaystyle\int\cos^2t\mathrm{d}t=\cfrac{2t+\sin2t}{16}+C\\ &=\cfrac{\arctan x^4}{8}+\cfrac{x^4}{8(1+x^8)}+C. \end{aligned}
原式=41∫cos2tdt=162t+sin2t+C=8arctanx4+8(1+x8)x4+C.
(这道题利用了两次换元求解)
(26) ∫ sin x 1 + sin x d x ; \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x; ∫1+sinxsinxdx;
解一
令
u
=
tan
x
2
u=\tan\cfrac{x}{2}
u=tan2x,得
∫
sin
x
1
+
sin
x
d
x
=
∫
4
u
(
1
+
u
)
2
(
1
+
u
2
)
d
u
=
∫
[
−
2
(
1
+
u
)
2
+
2
1
+
u
2
]
d
u
=
2
1
+
u
+
2
arctan
u
+
C
=
2
1
+
tan
x
2
+
x
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{4u}{(1+u)^2(1+u^2)}\mathrm{d}u=\displaystyle\int\left[\cfrac{-2}{(1+u)^2}+\cfrac{2}{1+u^2}\right]\mathrm{d}u\\ &=\cfrac{2}{1+u}+2\arctan u+C=\cfrac{2}{1+\tan\cfrac{x}{2}}+x+C. \end{aligned}
∫1+sinxsinxdx=∫(1+u)2(1+u2)4udu=∫[(1+u)2−2+1+u22]du=1+u2+2arctanu+C=1+tan2x2+x+C.
解二
∫
sin
x
1
+
sin
x
d
x
=
∫
sin
x
(
1
−
sin
x
)
cos
2
x
d
x
=
−
∫
1
cos
2
x
d
(
cos
x
)
−
∫
(
sec
2
x
−
1
)
d
x
=
sec
x
−
tan
x
+
x
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x(1-\sin x)}{\cos^2x}\mathrm{d}x\\ &=-\displaystyle\int\cfrac{1}{\cos^2x}\mathrm{d}(\cos x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\sec x-\tan x+x+C. \end{aligned}
∫1+sinxsinxdx=∫cos2xsinx(1−sinx)dx=−∫cos2x1d(cosx)−∫(sec2x−1)dx=secx−tanx+x+C.
(这道题主要利用了换元或三角变换求解)
(27) ∫ x + sin x 1 + cos x d x ; \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x; ∫1+cosxx+sinxdx;
解
∫
x
+
sin
x
1
+
cos
x
d
x
=
∫
x
2
sec
2
x
2
d
x
+
∫
tan
x
2
d
x
=
∫
x
d
(
tan
x
2
)
+
∫
tan
x
2
d
x
=
x
tan
x
2
+
C
.
\begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{2}\sec^2\cfrac{x}{2}\mathrm{d}x+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(\tan\cfrac{x}{2})+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=x\tan\cfrac{x}{2}+C. \end{aligned}
∫1+cosxx+sinxdx=∫2xsec22xdx+∫tan2xdx=∫xd(tan2x)+∫tan2xdx=xtan2x+C.
(这道题主要倍角公式求解,另当该函数为定积分时,有另一种解法,在总习题五第十一题(1),传送门在这里)
(28) ∫ e sin x x cos 3 x − sin x cos 2 x d x ; \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x; ∫esinxcos2xxcos3x−sinxdx;
解
∫
e
sin
x
x
cos
3
x
−
sin
x
cos
2
x
d
x
=
∫
x
e
sin
x
cos
x
d
x
−
∫
e
sin
x
tan
x
sec
x
d
x
=
∫
x
d
(
e
sin
x
)
−
∫
e
sin
x
d
(
sec
x
)
=
x
e
sin
x
−
∫
e
sin
x
d
x
−
(
sec
x
e
sin
x
−
∫
e
sin
x
d
x
)
=
(
x
−
sec
x
)
e
sin
x
+
C
.
\begin{aligned} \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x&=\displaystyle\int xe^{\sin x}\cos x\mathrm{d}x-\displaystyle\int e^{\sin x}\tan x\sec x\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(e^{\sin x})-\displaystyle\int e^{\sin x}\mathrm{d}(\sec x)\\ &=xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x-(\sec xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x)\\ &=(x-\sec x)e^{\sin x}+C. \end{aligned}
∫esinxcos2xxcos3x−sinxdx=∫xesinxcosxdx−∫esinxtanxsecxdx=∫xd(esinx)−∫esinxd(secx)=xesinx−∫esinxdx−(secxesinx−∫esinxdx)=(x−secx)esinx+C.
(这道题利用分部积分法化简至有相同部分可以相互抵消求解)
(31) ∫ e 3 x + e x e 4 x − e 2 x + 1 d x ; \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x; ∫e4x−e2x+1e3x+exdx;
解
∫
e
3
x
+
e
x
e
4
x
−
e
2
x
+
1
d
x
=
∫
e
x
+
e
−
x
e
2
x
+
e
−
2
x
−
1
d
x
=
∫
d
(
e
x
−
e
−
x
)
(
e
x
−
e
−
x
)
2
+
1
=
arctan
(
e
x
−
e
−
x
)
+
C
.
\begin{aligned} \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x&=\displaystyle\int\cfrac{e^{x}+e^{-x}}{e^{2x}+e^{-2x}-1}\mathrm{d}x=\displaystyle\int\cfrac{\mathrm{d}(e^{x}-e^{-x})}{(e^{x}-e^{-x})^2+1}\\ &=\arctan(e^{x}-e^{-x})+C. \end{aligned}
∫e4x−e2x+1e3x+exdx=∫e2x+e−2x−1ex+e−xdx=∫(ex−e−x)2+1d(ex−e−x)=arctan(ex−e−x)+C.
(这道题利用分式约分求解)
(33) ∫ ln 2 ( x + 1 + x 2 ) d x ; \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x; ∫ln2(x+1+x2)dx;
解
∫
ln
2
(
x
+
1
+
x
2
)
d
x
=
x
ln
2
(
x
+
1
+
x
2
)
−
∫
2
x
ln
(
x
+
1
+
x
2
)
1
+
x
2
d
x
=
x
ln
2
(
x
+
1
+
x
2
)
−
∫
2
ln
(
x
+
1
+
x
2
)
d
(
1
+
x
2
)
=
x
ln
2
(
x
+
1
+
x
2
)
−
2
1
+
x
2
ln
(
x
+
1
+
x
2
)
+
2
x
+
C
.
\begin{aligned} \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x&=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int\cfrac{2x\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}\mathrm{d}x\\ &=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int2\ln(x+\sqrt{1+x^2})\mathrm{d}(\sqrt{1+x^2})\\ &=x\ln^2(x+\sqrt{1+x^2})-2\sqrt{1+x^2}\ln(x+\sqrt{1+x^2})+2x+C. \end{aligned}
∫ln2(x+1+x2)dx=xln2(x+1+x2)−∫1+x22xln(x+1+x2)dx=xln2(x+1+x2)−∫2ln(x+1+x2)d(1+x2)=xln2(x+1+x2)−21+x2ln(x+1+x2)+2x+C.
(这道题主要利用
(
ln
(
x
+
1
+
x
2
)
)
′
=
1
1
+
x
2
(\ln(x+\sqrt{1+x^2}))'=\cfrac{1}{\sqrt{1+x^2}}
(ln(x+1+x2))′=1+x21进行化简求解)
(34) ∫ ln x ( 1 + x 2 ) 3 2 d x ; \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}\mathrm{d}x; ∫(1+x2)23lnxdx;
解
∫
ln
x
(
1
+
x
2
)
3
2
=
x
=
1
u
∫
u
ln
u
(
1
+
u
2
)
3
2
d
u
=
−
∫
ln
u
d
(
(
1
+
u
2
)
−
1
2
)
=
−
ln
u
1
+
u
2
+
∫
d
u
u
1
+
u
2
=
x
ln
x
1
+
x
2
−
∫
d
x
1
+
x
2
=
x
ln
x
1
+
x
2
−
ln
(
x
+
1
+
x
2
)
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{u\ln u}{(1+u^2)^{\frac{3}{2}}}\mathrm{d}u=-\displaystyle\int\ln u\mathrm{d}((1+u^2)^{-\frac{1}{2}})\\ &=-\cfrac{\ln u}{\sqrt{1+u^2}}+\displaystyle\int\cfrac{\mathrm{d}u}{u\sqrt{1+u^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{1+x^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\ln(x+\sqrt{1+x^2})+C. \end{aligned}
∫(1+x2)23lnxx=u1∫(1+u2)23ulnudu=−∫lnud((1+u2)−21)=−1+u2lnu+∫u1+u2du=x1+x2lnx−∫1+x2dx=x1+x2lnx−ln(x+1+x2)+C.
(这道题利用倒数换元求解)
(35) ∫ 1 − x 2 arcsin x d x ; \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x; ∫1−x2arcsinxdx;
解 设
x
=
sin
u
(
−
π
2
<
u
<
π
2
)
x=\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right)
x=sinu(−2π<u<2π),则
1
−
x
2
=
cos
u
,
d
x
=
cos
u
d
u
\sqrt{1-x^2}=\cos u,\mathrm{d}x=\cos u\mathrm{d}u
1−x2=cosu,dx=cosudu,于是
∫
1
−
x
2
arcsin
x
d
x
=
∫
u
cos
2
u
d
u
=
1
2
∫
u
(
1
+
cos
2
u
)
d
u
=
1
4
∫
u
d
(
2
u
+
sin
2
u
)
=
u
(
2
u
+
sin
2
u
)
4
−
1
4
∫
(
2
u
+
sin
2
u
)
d
u
=
u
2
4
+
u
4
sin
2
u
−
sin
2
u
4
+
C
=
(
arcsin
x
)
2
4
+
x
2
1
−
x
2
arcsin
x
−
x
2
4
+
C
.
\begin{aligned} \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x&=\displaystyle\int u\cos^2u\mathrm{d}u=\cfrac{1}{2}\displaystyle\int u(1+\cos2u)\mathrm{d}u\\ &=\cfrac{1}{4}\displaystyle\int u\mathrm{d}(2u+\sin2u)\\ &=\cfrac{u(2u+\sin2u)}{4}-\cfrac{1}{4}\displaystyle\int(2u+\sin2u)\mathrm{d}u\\ &=\cfrac{u^2}{4}+\cfrac{u}{4}\sin2u-\cfrac{\sin^2u}{4}+C\\ &=\cfrac{(\arcsin x)^2}{4}+\cfrac{x}{2}\sqrt{1-x^2}\arcsin x-\cfrac{x^2}{4}+C. \end{aligned}
∫1−x2arcsinxdx=∫ucos2udu=21∫u(1+cos2u)du=41∫ud(2u+sin2u)=4u(2u+sin2u)−41∫(2u+sin2u)du=4u2+4usin2u−4sin2u+C=4(arcsinx)2+2x1−x2arcsinx−4x2+C.
(这道题利用三角函数换元求解)
(36) ∫ x 3 arccos x 1 − x 2 d x ; \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x; ∫1−x2x3arccosxdx;
解 设
x
=
cos
u
(
0
<
u
<
π
)
x=\cos u\left(0<u<\pi\right)
x=cosu(0<u<π),则
1
−
x
2
=
sin
u
,
d
x
=
−
sin
u
d
u
\sqrt{1-x^2}=\sin u,\mathrm{d}x=-\sin u\mathrm{d}u
1−x2=sinu,dx=−sinudu,于是
∫
x
3
arccos
x
1
−
x
2
d
x
=
−
∫
u
cos
3
u
d
u
=
−
∫
u
d
(
sin
u
−
1
3
sin
3
u
)
=
−
u
(
sin
u
−
1
3
sin
3
u
)
+
∫
(
sin
u
−
1
3
sin
3
u
)
d
u
=
−
u
(
sin
u
−
1
3
sin
3
u
)
−
1
3
∫
(
2
+
cos
2
u
)
(
cos
u
)
=
−
u
(
sin
u
−
1
3
sin
3
u
)
−
2
3
cos
u
−
1
9
cos
3
u
+
C
=
−
1
3
1
−
x
2
(
2
+
x
2
)
arccos
x
−
1
9
(
6
+
x
2
)
+
C
.
\begin{aligned} \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x&=-\displaystyle\int u\cos^3u\mathrm{d}u=-\displaystyle\int u\mathrm{d}(\sin u-\cfrac{1}{3}\sin^3u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)+\displaystyle\int (\sin u-\cfrac{1}{3}\sin^3u)\mathrm{d}u\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{1}{3}\displaystyle\int(2+\cos^2u)\mathrm(\cos u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{2}{3}\cos u-\cfrac{1}{9}\cos^3u+C\\ &=-\cfrac{1}{3}\sqrt{1-x^2}(2+x^2)\arccos x-\cfrac{1}{9}(6+x^2)+C. \end{aligned}
∫1−x2x3arccosxdx=−∫ucos3udu=−∫ud(sinu−31sin3u)=−u(sinu−31sin3u)+∫(sinu−31sin3u)du=−u(sinu−31sin3u)−31∫(2+cos2u)(cosu)=−u(sinu−31sin3u)−32cosu−91cos3u+C=−311−x2(2+x2)arccosx−91(6+x2)+C.
(这道题主要用三角函数换元再分部积分求解)
(38) ∫ d x sin 3 x cos x ; \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}; ∫sin3xcosxdx;
解
∫
d
x
sin
3
x
cos
x
=
−
∫
cot
x
sec
2
x
d
(
cot
x
)
=
u
=
cot
x
−
∫
u
(
1
+
1
u
2
)
d
u
=
−
u
2
2
−
ln
∣
u
∣
+
C
=
−
cot
2
x
2
−
ln
∣
cot
x
∣
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}&=-\displaystyle\int\cot x\sec^2x\mathrm{d}(\cot x)\xlongequal{u=\cot x}-\displaystyle\int u\left(1+\cfrac{1}{u^2}\right)\mathrm{d}u\\ &=-\cfrac{u^2}{2}-\ln|u|+C=-\cfrac{\cot^2x}{2}-\ln|\cot x|+C. \end{aligned}
∫sin3xcosxdx=−∫cotxsec2xd(cotx)u=cotx−∫u(1+u21)du=−2u2−ln∣u∣+C=−2cot2x−ln∣cotx∣+C.
(这道题主要利用了三角函数换元)
(39) ∫ d x ( 2 + cos x ) sin x ; \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}; ∫(2+cosx)sinxdx;
解
∫
d
x
(
2
+
cos
x
)
sin
x
=
∫
d
(
cos
x
)
(
2
+
cos
x
)
(
cos
2
x
+
1
)
=
u
=
cos
x
∫
d
u
(
2
+
u
)
(
u
2
+
1
)
=
∫
[
1
6
(
u
−
1
)
−
1
2
(
u
+
1
)
+
1
3
(
u
+
2
)
]
d
u
=
1
6
ln
∣
u
−
1
∣
−
1
2
ln
∣
u
+
1
∣
+
1
3
ln
∣
u
+
2
∣
+
C
=
1
6
ln
(
1
−
cos
x
)
−
1
2
ln
(
1
+
cos
x
)
+
1
3
ln
(
2
+
cos
x
)
+
C
.
\begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}&=\displaystyle\int\cfrac{\mathrm{d}(\cos x)}{(2+\cos x)(\cos^2x+1)}\\ &\xlongequal{u=\cos x}\displaystyle\int\cfrac{\mathrm{d}u}{(2+u)(u^2+1)}\\ &=\displaystyle\int\left[\cfrac{1}{6(u-1)}-\cfrac{1}{2(u+1)}+\cfrac{1}{3(u+2)}\right]\mathrm{d}u\\ &=\cfrac{1}{6}\ln|u-1|-\cfrac{1}{2}\ln|u+1|+\cfrac{1}{3}\ln|u+2|+C\\ &=\cfrac{1}{6}\ln(1-\cos x)-\cfrac{1}{2}\ln(1+\cos x)+\cfrac{1}{3}\ln(2+\cos x)+C. \end{aligned}
∫(2+cosx)sinxdx=∫(2+cosx)(cos2x+1)d(cosx)u=cosx∫(2+u)(u2+1)du=∫[6(u−1)1−2(u+1)1+3(u+2)1]du=61ln∣u−1∣−21ln∣u+1∣+31ln∣u+2∣+C=61ln(1−cosx)−21ln(1+cosx)+31ln(2+cosx)+C.
(这道题主要利用三角函数换元和因式分解积分)
(40) ∫ sin x cos x sin x + cos x d x ; \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x; ∫sinx+cosxsinxcosxdx;
解一
∫
sin
x
cos
x
sin
x
+
cos
x
d
x
=
∫
1
2
(
sin
x
+
cos
x
)
2
−
1
2
sin
x
+
cos
x
d
x
=
1
2
∫
(
sin
x
+
cos
x
)
d
x
−
1
2
∫
1
sin
x
+
cos
x
d
x
=
1
2
(
−
cos
x
+
sin
x
)
−
1
2
∫
1
sin
x
+
cos
x
d
x
.
\begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\cfrac{1}{2}(\sin x+\cos x)^2-\cfrac{1}{2}}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int(\sin x+\cos x)\mathrm{d}x-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}(-\cos x+\sin x)-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x. \end{aligned}
∫sinx+cosxsinxcosxdx=∫sinx+cosx21(sinx+cosx)2−21dx=21∫(sinx+cosx)dx−21∫sinx+cosx1dx=21(−cosx+sinx)−21∫sinx+cosx1dx.
令
u
=
tan
x
2
u=\tan\cfrac{x}{2}
u=tan2x,则
sin
x
=
2
u
1
+
u
2
,
cos
x
=
1
−
u
2
1
+
u
2
,
d
x
=
2
1
+
u
2
d
u
\sin x=\cfrac{2u}{1+u^2},\cos x=\cfrac{1-u^2}{1+u^2},\mathrm{d}x=\cfrac{2}{1+u^2}\mathrm{d}u
sinx=1+u22u,cosx=1+u21−u2,dx=1+u22du,故有
∫
1
sin
x
+
cos
x
d
x
=
∫
2
2
u
+
1
−
u
2
d
u
=
−
∫
2
(
u
−
1
)
2
−
(
2
)
2
d
u
=
−
1
2
∫
2
u
−
1
−
2
d
u
+
1
2
∫
2
u
−
1
+
2
d
u
=
1
2
ln
∣
u
−
1
+
2
u
−
1
−
2
∣
+
C
′
.
\begin{aligned} \displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{2}{2u+1-u^2}\mathrm{d}u=-\displaystyle\int\cfrac{2}{(u-1)^2-(\sqrt{2})^2}\mathrm{d}u\\ &=-\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1-\sqrt{2}}\mathrm{d}u+\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1+\sqrt{2}}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\ln\left|\cfrac{u-1+\sqrt{2}}{u-1-\sqrt{2}}\right|+C'. \end{aligned}
∫sinx+cosx1dx=∫2u+1−u22du=−∫(u−1)2−(2)22du=−21∫u−1−22du+21∫u−1+22du=21ln∣∣∣∣∣u−1−2u−1+2∣∣∣∣∣+C′.
因此有
∫
sin
x
cos
x
sin
x
+
cos
x
d
x
=
1
2
(
sin
x
−
cos
x
)
−
1
2
2
ln
∣
tan
x
2
−
1
+
2
tan
x
2
−
1
−
2
∣
+
C
.
\displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x=\cfrac{1}{2}(\sin x-\cos x)-\cfrac{1}{2\sqrt{2}}\ln\left|\cfrac{\tan\cfrac{x}{2}-1+\sqrt{2}}{\tan\cfrac{x}{2}-1-\sqrt{2}}\right|+C.
∫sinx+cosxsinxcosxdx=21(sinx−cosx)−221ln∣∣∣∣∣∣∣∣tan2x−1−2tan2x−1+2∣∣∣∣∣∣∣∣+C.
解二
∫
sin
x
cos
x
sin
x
+
cos
x
d
x
=
∫
sin
x
cos
x
2
sin
(
x
+
π
4
)
d
x
=
u
=
x
+
π
4
∫
2
sin
2
u
−
1
2
2
sin
u
d
u
=
1
2
∫
sin
u
d
u
−
1
2
2
∫
csc
u
d
u
=
−
cos
(
x
+
π
4
)
2
−
1
2
2
ln
∣
csc
(
x
+
π
4
)
−
cot
(
x
+
π
4
)
∣
+
V
.
\begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x\cos x}{\sqrt{2}\sin\left(x+\cfrac{\pi}{4}\right)}\mathrm{d}x\xlongequal{u=x+\cfrac{\pi}{4}}\displaystyle\int\cfrac{2\sin^2u-1}{2\sqrt{2}\sin u}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\displaystyle\int\sin u\mathrm{d}u-\cfrac{1}{2\sqrt{2}}\displaystyle\int\csc u\mathrm{d}u\\ &=-\cfrac{\cos\left(x+\cfrac{\pi}{4}\right)}{\sqrt{2}}-\cfrac{1}{2\sqrt{2}}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+V. \end{aligned}
∫sinx+cosxsinxcosxdx=∫2sin(x+4π)sinxcosxdxu=x+4π∫22sinu2sin2u−1du=21∫sinudu−221∫cscudu=−2cos(x+4π)−221ln∣∣∣∣∣csc(x+4π)−cot(x+4π)∣∣∣∣∣+V.
(这道题主要利用万能公式或三角函数换元积分求解)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。
另,参考的积分表及公式见附录。