第四章 不定积分(二)

  本文接自上一篇《第四章 不定积分(一)》,继续记录总习题四。

目录

总习题四

4.求下列不定积分(其中 a a a b b b为常数):

(7) ∫ tan ⁡ 4 x d x ; \displaystyle\int\tan^4x\mathrm{d}x; tan4xdx;


∫ tan ⁡ 4 x d x = ∫ tan ⁡ 2 x ( sec ⁡ 2 x − 1 ) d x = ∫ tan ⁡ 2 x d ( tan ⁡ x ) − ∫ ( sec ⁡ 2 x − 1 ) d x = 1 3 tan ⁡ 3 x − tan ⁡ x + x + C . \begin{aligned} \displaystyle\int\tan^4x\mathrm{d}x&=\displaystyle\int\tan^2x(\sec^2x-1)\mathrm{d}x\\ &=\displaystyle\int\tan^2x\mathrm{d}(\tan x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\cfrac{1}{3}\tan^3x-\tan x+x+C. \end{aligned} tan4xdx=tan2x(sec2x1)dx=tan2xd(tanx)(sec2x1)dx=31tan3xtanx+x+C.
这道题主要利用三角变换公式进行计算

(10) ∫ a + x a − x d x ; \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x; axa+x dx;

解一
∫ a + x a − x d x = ∫ a + x a 2 − x 2 d x = a ∫ 1 1 − ( x a ) 2 d ( x a ) − 1 2 ∫ d ( a 2 − x 2 ) a 2 − x 2 = a arcsin ⁡ x a − a 2 − x 2 + C . \begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int\cfrac{a+x}{\sqrt{a^2-x^2}}\mathrm{d}x=a\displaystyle\int\cfrac{1}{\sqrt{1-\left(\cfrac{x}{a}\right)^2}}\mathrm{d}\left(\cfrac{x}{a}\right)-\cfrac{1}{2}\displaystyle\int\cfrac{\mathrm{d}(a^2-x^2)}{\sqrt{a^2-x^2}}\\ &=a\arcsin\cfrac{x}{a}-\sqrt{a^2-x^2}+C. \end{aligned} axa+x dx=a2x2 a+xdx=a1(ax)2 1d(ax)21a2x2 d(a2x2)=aarcsinaxa2x2 +C.
解二  令 u = a + x a − x u=\sqrt{\cfrac{a+x}{a-x}} u=axa+x ,即 x = a u 2 − 1 u 2 + 1 x=a\cfrac{u^2-1}{u^2+1} x=au2+1u21,则
∫ a + x a − x d x = ∫ u ⋅ 4 a u ( 1 + u 2 ) 2 d u = ∫ − 2 a u d ( 1 1 + u 2 ) = − 2 a u 1 + u 2 + ∫ 2 a 1 + u 2 d u = − 2 a u 1 + u 2 + 2 a arctan ⁡ u + C = ( x − a ) a + x a − x + 2 a arctan ⁡ a + x a − x + C . \begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int u\cdot\cfrac{4au}{(1+u^2)^2}\mathrm{d}u=\displaystyle\int-2au\mathrm{d}\left(\cfrac{1}{1+u^2}\right)\\ &=-\cfrac{2au}{1+u^2}+\displaystyle\int\cfrac{2a}{1+u^2}\mathrm{d}u\\ &=-\cfrac{2au}{1+u^2}+2a\arctan u+C\\ &=(x-a)\sqrt{\cfrac{a+x}{a-x}}+2a\arctan\sqrt{\cfrac{a+x}{a-x}}+C. \end{aligned} axa+x dx=u(1+u2)24audu=2aud(1+u21)=1+u22au+1+u22adu=1+u22au+2aarctanu+C=(xa)axa+x +2aarctanaxa+x +C.
这道题可以利用换元积分或进行分式变换求解

(11) ∫ d x x ( x + 1 ) ; \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}; x(x+1) dx;

解一
∫ d x x ( x + 1 ) = ∫ d x ( x + 1 2 ) 2 − ( 1 2 ) 2 = x = − 1 2 + 1 2 sec ⁡ u ∫ sec ⁡ u d u = ln ⁡ ∣ sec ⁡ u + tan ⁡ u ∣ + C = ln ⁡ ∣ 2 x + 1 + 2 x ( x + 1 ) ∣ + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{\left(x+\cfrac{1}{2}\right)^2-\left(\cfrac{1}{2}\right)^2}}\\ &\xlongequal{x=-\cfrac{1}{2}+\cfrac{1}{2}\sec u}\displaystyle\int\sec u\mathrm{d}u=\ln|\sec u+\tan u|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned} x(x+1) dx=(x+21)2(21)2 dxx=21+21secu secudu=lnsecu+tanu+C=ln2x+1+2x(x+1) +C.
解二  当 x > 0 x>0 x>0时,因为 1 x ( x + 1 ) = 1 x x 1 + x \cfrac{1}{\sqrt{x(x+1)}}=\cfrac{1}{x}\sqrt{\cfrac{x}{1+x}} x(x+1) 1=x11+xx ,故令 u = x 1 + x u=\sqrt{\cfrac{x}{1+x}} u=1+xx ,即 x = u 2 1 − u 2 x=\cfrac{u^2}{1-u^2} x=1u2u2,则
∫ d x x ( x + 1 ) = ∫ 2 1 − u 2 d u = ∫ ( 1 1 − u + 1 1 + u ) d u = ln ⁡ ∣ 1 + u 1 − u ∣ + C = ln ⁡ ∣ 1 + x + x 1 + x − x ∣ + C = ln ⁡ ∣ 2 x + 1 + 2 x ( x + 1 ) ∣ + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{2}{1-u^2}\mathrm{d}u=\displaystyle\int\left(\cfrac{1}{1-u}+\cfrac{1}{1+u}\right)\mathrm{d}u\\ &=\ln|\cfrac{1+u}{1-u}|+C=\ln\left|\cfrac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}-\sqrt{x}}\right|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned} x(x+1) dx=1u22du=(1u1+1+u1)du=ln1u1+u+C=ln1+x x 1+x +x +C=ln2x+1+2x(x+1) +C.
  当 x < − 1 x<-1 x<1时,同样可得 ∫ d x x ( x + 1 ) = ln ⁡ ∣ 2 x + 1 + 2 x ( x + 1 ) ∣ + C \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}=\ln|2x+1+2\sqrt{x(x+1)}|+C x(x+1) dx=ln2x+1+2x(x+1) +C。(这道题主要用分段或配方进行计算

(15) ∫ d x x 2 x 2 − 1 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}; x2x21 dx;

   ∫ d x x 2 x 2 − 1 = x = 1 u − ∫ u d u 1 − u 2 = 1 − u 2 + C = x 2 − 1 x + C , \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}\xlongequal{x=\cfrac{1}{u}}-\displaystyle\int\cfrac{u\mathrm{d}u}{\sqrt{1-u^2}}=\sqrt{1-u^2}+C=\cfrac{\sqrt{x^2-1}}{x}+C, x2x21 dxx=u1 1u2 udu=1u2 +C=xx21 +C,易知当 x < 0 x<0 x<0 x > 0 x>0 x>0时的结果相同。(这道题主要利用换元积分计算

(16) ∫ d x ( a 2 − x 2 ) 5 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}; (a2x2)25dx;

  设 x = a sin ⁡ u ( − π 2 < u < π 2 ) x=a\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) x=asinu(2π<u<2π),则 a 2 − x 2 = a cos ⁡ u , d x = a cos ⁡ u d u \sqrt{a^2-x^2}=a\cos u,\mathrm{d}x=a\cos u\mathrm{d}u a2x2 =acosu,dx=acosudu,于是
∫ d x ( a 2 − x 2 ) 5 2 = 1 a 4 ∫ sec ⁡ 4 u d u = 1 a 4 ∫ ( tan ⁡ 2 u + 1 ) d ( tan ⁡ u ) = tan ⁡ 3 u 3 a 4 + tan ⁡ u a 4 + C = 1 3 a 4 [ x 3 ( a 2 − x 2 ) 3 + 3 x a 2 − x 2 ] + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}&=\cfrac{1}{a^4}\displaystyle\int\sec^4u\mathrm{d}u=\cfrac{1}{a^4}\displaystyle\int(\tan^2u+1)\mathrm{d}(\tan u)\\ &=\cfrac{\tan^3u}{3a^4}+\cfrac{\tan u}{a^4}+C\\ &=\cfrac{1}{3a^4}\left[\cfrac{x^3}{\sqrt{(a^2-x^2)^3}}+\cfrac{3x}{\sqrt{a^2-x^2}}\right]+C. \end{aligned} (a2x2)25dx=a41sec4udu=a41(tan2u+1)d(tanu)=3a4tan3u+a4tanu+C=3a41[(a2x2)3 x3+a2x2 3x]+C.
这道题主要利用三角函数进行替换

(17) ∫ d x x 4 1 + x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}; x41+x2 dx;


∫ d x x 4 1 + x 2 = x = 1 u ∫ − u 3 d u 1 + u 2 = − ∫ ( u 1 + u 2 − u 1 + u 2 ) d u = − 1 3 ( 1 + u 2 ) 3 2 + 1 + u 2 + C = − 1 3 ( 1 + x 2 ) 3 x 3 + 1 + x 2 x + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{-u^3\mathrm{d}u}{\sqrt{1+u^2}}=-\displaystyle\int\left(u\sqrt{1+u^2}-\cfrac{u}{\sqrt{1+u^2}}\right)\mathrm{d}u\\ &=-\cfrac{1}{3}(1+u^2)^{\frac{3}{2}}+\sqrt{1+u^2}+C\\ &=-\cfrac{1}{3}\cfrac{\sqrt{(1+x^2)^3}}{x^3}+\cfrac{\sqrt{1+x^2}}{x}+C. \end{aligned} x41+x2 dxx=u1 1+u2 u3du=(u1+u2 1+u2 u)du=31(1+u2)23+1+u2 +C=31x3(1+x2)3 +x1+x2 +C.
  易知当 x < 0 x<0 x<0 x > 0 x>0 x>0时结果相同。(这道题用倒数换元再拆分因式计算

(21) ∫ arctan ⁡ x d x ; \displaystyle\int\arctan\sqrt{x}\mathrm{d}x; arctanx dx;


∫ arctan ⁡ x d x = ∫ arctan ⁡ x d ( 1 + x ) = ( 1 + x ) arctan ⁡ x − ∫ 1 2 x d x = ( 1 + x ) arctan ⁡ x − x + C . \begin{aligned} \displaystyle\int\arctan\sqrt{x}\mathrm{d}x&=\displaystyle\int\arctan\sqrt{x}\mathrm{d}(1+x)=(1+x)\arctan\sqrt{x}-\displaystyle\int\cfrac{1}{2\sqrt{x}}\mathrm{d}x\\ &=(1+x)\arctan\sqrt{x}-\sqrt{x}+C. \end{aligned} arctanx dx=arctanx d(1+x)=(1+x)arctanx 2x 1dx=(1+x)arctanx x +C.
这道题在积分时凑出一个因式简化计算

(22) ∫ 1 + cos ⁡ x sin ⁡ x d x ; \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x; sinx1+cosx dx;


∫ 1 + cos ⁡ x sin ⁡ x d x = ∫ 2 ∣ cos ⁡ x 2 ∣ 2 sin ⁡ x 2 cos ⁡ x 2 d x = ± 2 ∫ csc ⁡ x 2 d ( x 2 ) = ± 2 ln ⁡ ∣ csc ⁡ x 2 − cot ⁡ x 2 ∣ + C . \begin{aligned} \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sqrt{2}|\cos\cfrac{x}{2}|}{2\sin\cfrac{x}{2}\cos\cfrac{x}{2}}\mathrm{d}x=\pm\sqrt{2}\displaystyle\int\csc\cfrac{x}{2}\mathrm{d}\left(\cfrac{x}{2}\right)\\ &=\pm\sqrt{2}\ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|+C. \end{aligned} sinx1+cosx dx=2sin2xcos2x2 cos2xdx=±2 csc2xd(2x)=±2 lncsc2xcot2x+C.
  上式当 cos ⁡ x 2 > 0 \cos\cfrac{x}{2}>0 cos2x>0时取正,当 cos ⁡ x 2 < 0 \cos\cfrac{x}{2}<0 cos2x<0时取负。
  当 cos ⁡ x 2 > 0 \cos\cfrac{x}{2}>0 cos2x>0时,
ln ⁡ ∣ csc ⁡ x 2 − cot ⁡ x 2 ∣ = ln ⁡ 1 − cos ⁡ x 2 ∣ sin ⁡ x 2 ∣ = ln ⁡ ( ∣ csc ⁡ x 2 ∣ − ∣ cot ⁡ x 2 ∣ ) . \ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right). lncsc2xcot2x=lnsin2x1cos2x=ln(csc2xcot2x).
  当 cos ⁡ x 2 < 0 \cos\cfrac{x}{2}<0 cos2x<0时,
ln ⁡ ∣ csc ⁡ x 2 − cot ⁡ x 2 ∣ = ln ⁡ 1 − cos ⁡ x 2 ∣ sin ⁡ x 2 ∣ = ln ⁡ ( ∣ csc ⁡ x 2 ∣ + ∣ cot ⁡ x 2 ∣ ) = − ln ⁡ ( ∣ csc ⁡ x 2 ∣ − ∣ cot ⁡ x 2 ∣ ) . \ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|+|\cot\cfrac{x}{2}|\right)=-\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right). lncsc2xcot2x=lnsin2x1cos2x=ln(csc2x+cot2x)=ln(csc2xcot2x).
  因此有
∫ 1 + cos ⁡ x sin ⁡ x d x = 2 ln ⁡ ( ∣ csc ⁡ x 2 ∣ − ∣ cot ⁡ x 2 ∣ ) + C . \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x=\sqrt{2}\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right)+C. sinx1+cosx dx=2 ln(csc2xcot2x)+C.
这道题主要利用了分段求解

(23) ∫ x 3 ( 1 + x 8 ) 2 d x ; \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x; (1+x8)2x3dx;


∫ x 3 ( 1 + x 8 ) 2 d x = 1 4 ∫ 1 ( 1 + x 8 ) 2 d ( x 4 ) = u = x 4 1 4 ∫ 1 ( 1 + u 2 ) 2 d u . \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x=\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+x^8)^2}\mathrm{d}(x^4)\xlongequal{u=x^4}\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+u^2)^2}\mathrm{d}u. (1+x8)2x3dx=41(1+x8)21d(x4)u=x4 41(1+u2)21du.
  设 u = tan ⁡ t ( − π 2 < t < π 2 ) u=\tan t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right) u=tant(2π<t<2π),则 1 + u 2 = sec ⁡ 2 t , d u = sec ⁡ 2 t d t 1+u^2=\sec^2t,\mathrm{d}u=\sec^2t\mathrm{d}t 1+u2=sec2t,du=sec2tdt,于是
原式 = 1 4 ∫ cos ⁡ 2 t d t = 2 t + sin ⁡ 2 t 16 + C = arctan ⁡ x 4 8 + x 4 8 ( 1 + x 8 ) + C . \begin{aligned} \text{原式}&=\cfrac{1}{4}\displaystyle\int\cos^2t\mathrm{d}t=\cfrac{2t+\sin2t}{16}+C\\ &=\cfrac{\arctan x^4}{8}+\cfrac{x^4}{8(1+x^8)}+C. \end{aligned} 原式=41cos2tdt=162t+sin2t+C=8arctanx4+8(1+x8)x4+C.
这道题利用了两次换元求解

(26) ∫ sin ⁡ x 1 + sin ⁡ x d x ; \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x; 1+sinxsinxdx;

解一
  令 u = tan ⁡ x 2 u=\tan\cfrac{x}{2} u=tan2x,得
∫ sin ⁡ x 1 + sin ⁡ x d x = ∫ 4 u ( 1 + u ) 2 ( 1 + u 2 ) d u = ∫ [ − 2 ( 1 + u ) 2 + 2 1 + u 2 ] d u = 2 1 + u + 2 arctan ⁡ u + C = 2 1 + tan ⁡ x 2 + x + C . \begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{4u}{(1+u)^2(1+u^2)}\mathrm{d}u=\displaystyle\int\left[\cfrac{-2}{(1+u)^2}+\cfrac{2}{1+u^2}\right]\mathrm{d}u\\ &=\cfrac{2}{1+u}+2\arctan u+C=\cfrac{2}{1+\tan\cfrac{x}{2}}+x+C. \end{aligned} 1+sinxsinxdx=(1+u)2(1+u2)4udu=[(1+u)22+1+u22]du=1+u2+2arctanu+C=1+tan2x2+x+C.
解二
∫ sin ⁡ x 1 + sin ⁡ x d x = ∫ sin ⁡ x ( 1 − sin ⁡ x ) cos ⁡ 2 x d x = − ∫ 1 cos ⁡ 2 x d ( cos ⁡ x ) − ∫ ( sec ⁡ 2 x − 1 ) d x = sec ⁡ x − tan ⁡ x + x + C . \begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x(1-\sin x)}{\cos^2x}\mathrm{d}x\\ &=-\displaystyle\int\cfrac{1}{\cos^2x}\mathrm{d}(\cos x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\sec x-\tan x+x+C. \end{aligned} 1+sinxsinxdx=cos2xsinx(1sinx)dx=cos2x1d(cosx)(sec2x1)dx=secxtanx+x+C.
这道题主要利用了换元或三角变换求解

(27) ∫ x + sin ⁡ x 1 + cos ⁡ x d x ; \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x; 1+cosxx+sinxdx;


∫ x + sin ⁡ x 1 + cos ⁡ x d x = ∫ x 2 sec ⁡ 2 x 2 d x + ∫ tan ⁡ x 2 d x = ∫ x d ( tan ⁡ x 2 ) + ∫ tan ⁡ x 2 d x = x tan ⁡ x 2 + C . \begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{2}\sec^2\cfrac{x}{2}\mathrm{d}x+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(\tan\cfrac{x}{2})+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=x\tan\cfrac{x}{2}+C. \end{aligned} 1+cosxx+sinxdx=2xsec22xdx+tan2xdx=xd(tan2x)+tan2xdx=xtan2x+C.
这道题主要倍角公式求解,另当该函数为定积分时,有另一种解法,在总习题五第十一题(1),传送门在这里

(28) ∫ e sin ⁡ x x cos ⁡ 3 x − sin ⁡ x cos ⁡ 2 x d x ; \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x; esinxcos2xxcos3xsinxdx;


∫ e sin ⁡ x x cos ⁡ 3 x − sin ⁡ x cos ⁡ 2 x d x = ∫ x e sin ⁡ x cos ⁡ x d x − ∫ e sin ⁡ x tan ⁡ x sec ⁡ x d x = ∫ x d ( e sin ⁡ x ) − ∫ e sin ⁡ x d ( sec ⁡ x ) = x e sin ⁡ x − ∫ e sin ⁡ x d x − ( sec ⁡ x e sin ⁡ x − ∫ e sin ⁡ x d x ) = ( x − sec ⁡ x ) e sin ⁡ x + C . \begin{aligned} \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x&=\displaystyle\int xe^{\sin x}\cos x\mathrm{d}x-\displaystyle\int e^{\sin x}\tan x\sec x\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(e^{\sin x})-\displaystyle\int e^{\sin x}\mathrm{d}(\sec x)\\ &=xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x-(\sec xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x)\\ &=(x-\sec x)e^{\sin x}+C. \end{aligned} esinxcos2xxcos3xsinxdx=xesinxcosxdxesinxtanxsecxdx=xd(esinx)esinxd(secx)=xesinxesinxdx(secxesinxesinxdx)=(xsecx)esinx+C.
这道题利用分部积分法化简至有相同部分可以相互抵消求解

(31) ∫ e 3 x + e x e 4 x − e 2 x + 1 d x ; \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x; e4xe2x+1e3x+exdx;


∫ e 3 x + e x e 4 x − e 2 x + 1 d x = ∫ e x + e − x e 2 x + e − 2 x − 1 d x = ∫ d ( e x − e − x ) ( e x − e − x ) 2 + 1 = arctan ⁡ ( e x − e − x ) + C . \begin{aligned} \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x&=\displaystyle\int\cfrac{e^{x}+e^{-x}}{e^{2x}+e^{-2x}-1}\mathrm{d}x=\displaystyle\int\cfrac{\mathrm{d}(e^{x}-e^{-x})}{(e^{x}-e^{-x})^2+1}\\ &=\arctan(e^{x}-e^{-x})+C. \end{aligned} e4xe2x+1e3x+exdx=e2x+e2x1ex+exdx=(exex)2+1d(exex)=arctan(exex)+C.
这道题利用分式约分求解

(33) ∫ ln ⁡ 2 ( x + 1 + x 2 ) d x ; \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x; ln2(x+1+x2 )dx;


∫ ln ⁡ 2 ( x + 1 + x 2 ) d x = x ln ⁡ 2 ( x + 1 + x 2 ) − ∫ 2 x ln ⁡ ( x + 1 + x 2 ) 1 + x 2 d x = x ln ⁡ 2 ( x + 1 + x 2 ) − ∫ 2 ln ⁡ ( x + 1 + x 2 ) d ( 1 + x 2 ) = x ln ⁡ 2 ( x + 1 + x 2 ) − 2 1 + x 2 ln ⁡ ( x + 1 + x 2 ) + 2 x + C . \begin{aligned} \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x&=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int\cfrac{2x\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}\mathrm{d}x\\ &=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int2\ln(x+\sqrt{1+x^2})\mathrm{d}(\sqrt{1+x^2})\\ &=x\ln^2(x+\sqrt{1+x^2})-2\sqrt{1+x^2}\ln(x+\sqrt{1+x^2})+2x+C. \end{aligned} ln2(x+1+x2 )dx=xln2(x+1+x2 )1+x2 2xln(x+1+x2 )dx=xln2(x+1+x2 )2ln(x+1+x2 )d(1+x2 )=xln2(x+1+x2 )21+x2 ln(x+1+x2 )+2x+C.
这道题主要利用 ( ln ⁡ ( x + 1 + x 2 ) ) ′ = 1 1 + x 2 (\ln(x+\sqrt{1+x^2}))'=\cfrac{1}{\sqrt{1+x^2}} (ln(x+1+x2 ))=1+x2 1进行化简求解

(34) ∫ ln ⁡ x ( 1 + x 2 ) 3 2 d x ; \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}\mathrm{d}x; (1+x2)23lnxdx;


∫ ln ⁡ x ( 1 + x 2 ) 3 2 = x = 1 u ∫ u ln ⁡ u ( 1 + u 2 ) 3 2 d u = − ∫ ln ⁡ u d ( ( 1 + u 2 ) − 1 2 ) = − ln ⁡ u 1 + u 2 + ∫ d u u 1 + u 2 = x ln ⁡ x 1 + x 2 − ∫ d x 1 + x 2 = x ln ⁡ x 1 + x 2 − ln ⁡ ( x + 1 + x 2 ) + C . \begin{aligned} \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{u\ln u}{(1+u^2)^{\frac{3}{2}}}\mathrm{d}u=-\displaystyle\int\ln u\mathrm{d}((1+u^2)^{-\frac{1}{2}})\\ &=-\cfrac{\ln u}{\sqrt{1+u^2}}+\displaystyle\int\cfrac{\mathrm{d}u}{u\sqrt{1+u^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{1+x^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\ln(x+\sqrt{1+x^2})+C. \end{aligned} (1+x2)23lnxx=u1 (1+u2)23ulnudu=lnud((1+u2)21)=1+u2 lnu+u1+u2 du=x1+x2 lnx1+x2 dx=x1+x2 lnxln(x+1+x2 )+C.
这道题利用倒数换元求解

(35) ∫ 1 − x 2 arcsin ⁡ x d x ; \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x; 1x2 arcsinxdx;

  设 x = sin ⁡ u ( − π 2 < u < π 2 ) x=\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) x=sinu(2π<u<2π),则 1 − x 2 = cos ⁡ u , d x = cos ⁡ u d u \sqrt{1-x^2}=\cos u,\mathrm{d}x=\cos u\mathrm{d}u 1x2 =cosu,dx=cosudu,于是
∫ 1 − x 2 arcsin ⁡ x d x = ∫ u cos ⁡ 2 u d u = 1 2 ∫ u ( 1 + cos ⁡ 2 u ) d u = 1 4 ∫ u d ( 2 u + sin ⁡ 2 u ) = u ( 2 u + sin ⁡ 2 u ) 4 − 1 4 ∫ ( 2 u + sin ⁡ 2 u ) d u = u 2 4 + u 4 sin ⁡ 2 u − sin ⁡ 2 u 4 + C = ( arcsin ⁡ x ) 2 4 + x 2 1 − x 2 arcsin ⁡ x − x 2 4 + C . \begin{aligned} \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x&=\displaystyle\int u\cos^2u\mathrm{d}u=\cfrac{1}{2}\displaystyle\int u(1+\cos2u)\mathrm{d}u\\ &=\cfrac{1}{4}\displaystyle\int u\mathrm{d}(2u+\sin2u)\\ &=\cfrac{u(2u+\sin2u)}{4}-\cfrac{1}{4}\displaystyle\int(2u+\sin2u)\mathrm{d}u\\ &=\cfrac{u^2}{4}+\cfrac{u}{4}\sin2u-\cfrac{\sin^2u}{4}+C\\ &=\cfrac{(\arcsin x)^2}{4}+\cfrac{x}{2}\sqrt{1-x^2}\arcsin x-\cfrac{x^2}{4}+C. \end{aligned} 1x2 arcsinxdx=ucos2udu=21u(1+cos2u)du=41ud(2u+sin2u)=4u(2u+sin2u)41(2u+sin2u)du=4u2+4usin2u4sin2u+C=4(arcsinx)2+2x1x2 arcsinx4x2+C.
这道题利用三角函数换元求解

(36) ∫ x 3 arccos ⁡ x 1 − x 2 d x ; \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x; 1x2 x3arccosxdx;

  设 x = cos ⁡ u ( 0 < u < π ) x=\cos u\left(0<u<\pi\right) x=cosu(0<u<π),则 1 − x 2 = sin ⁡ u , d x = − sin ⁡ u d u \sqrt{1-x^2}=\sin u,\mathrm{d}x=-\sin u\mathrm{d}u 1x2 =sinu,dx=sinudu,于是
∫ x 3 arccos ⁡ x 1 − x 2 d x = − ∫ u cos ⁡ 3 u d u = − ∫ u d ( sin ⁡ u − 1 3 sin ⁡ 3 u ) = − u ( sin ⁡ u − 1 3 sin ⁡ 3 u ) + ∫ ( sin ⁡ u − 1 3 sin ⁡ 3 u ) d u = − u ( sin ⁡ u − 1 3 sin ⁡ 3 u ) − 1 3 ∫ ( 2 + cos ⁡ 2 u ) ( cos ⁡ u ) = − u ( sin ⁡ u − 1 3 sin ⁡ 3 u ) − 2 3 cos ⁡ u − 1 9 cos ⁡ 3 u + C = − 1 3 1 − x 2 ( 2 + x 2 ) arccos ⁡ x − 1 9 ( 6 + x 2 ) + C . \begin{aligned} \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x&=-\displaystyle\int u\cos^3u\mathrm{d}u=-\displaystyle\int u\mathrm{d}(\sin u-\cfrac{1}{3}\sin^3u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)+\displaystyle\int (\sin u-\cfrac{1}{3}\sin^3u)\mathrm{d}u\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{1}{3}\displaystyle\int(2+\cos^2u)\mathrm(\cos u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{2}{3}\cos u-\cfrac{1}{9}\cos^3u+C\\ &=-\cfrac{1}{3}\sqrt{1-x^2}(2+x^2)\arccos x-\cfrac{1}{9}(6+x^2)+C. \end{aligned} 1x2 x3arccosxdx=ucos3udu=ud(sinu31sin3u)=u(sinu31sin3u)+(sinu31sin3u)du=u(sinu31sin3u)31(2+cos2u)(cosu)=u(sinu31sin3u)32cosu91cos3u+C=311x2 (2+x2)arccosx91(6+x2)+C.
这道题主要用三角函数换元再分部积分求解

(38) ∫ d x sin ⁡ 3 x cos ⁡ x ; \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}; sin3xcosxdx;


∫ d x sin ⁡ 3 x cos ⁡ x = − ∫ cot ⁡ x sec ⁡ 2 x d ( cot ⁡ x ) = u = cot ⁡ x − ∫ u ( 1 + 1 u 2 ) d u = − u 2 2 − ln ⁡ ∣ u ∣ + C = − cot ⁡ 2 x 2 − ln ⁡ ∣ cot ⁡ x ∣ + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}&=-\displaystyle\int\cot x\sec^2x\mathrm{d}(\cot x)\xlongequal{u=\cot x}-\displaystyle\int u\left(1+\cfrac{1}{u^2}\right)\mathrm{d}u\\ &=-\cfrac{u^2}{2}-\ln|u|+C=-\cfrac{\cot^2x}{2}-\ln|\cot x|+C. \end{aligned} sin3xcosxdx=cotxsec2xd(cotx)u=cotx u(1+u21)du=2u2lnu+C=2cot2xlncotx+C.
这道题主要利用了三角函数换元

(39) ∫ d x ( 2 + cos ⁡ x ) sin ⁡ x ; \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}; (2+cosx)sinxdx;


∫ d x ( 2 + cos ⁡ x ) sin ⁡ x = ∫ d ( cos ⁡ x ) ( 2 + cos ⁡ x ) ( cos ⁡ 2 x + 1 ) = u = cos ⁡ x ∫ d u ( 2 + u ) ( u 2 + 1 ) = ∫ [ 1 6 ( u − 1 ) − 1 2 ( u + 1 ) + 1 3 ( u + 2 ) ] d u = 1 6 ln ⁡ ∣ u − 1 ∣ − 1 2 ln ⁡ ∣ u + 1 ∣ + 1 3 ln ⁡ ∣ u + 2 ∣ + C = 1 6 ln ⁡ ( 1 − cos ⁡ x ) − 1 2 ln ⁡ ( 1 + cos ⁡ x ) + 1 3 ln ⁡ ( 2 + cos ⁡ x ) + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}&=\displaystyle\int\cfrac{\mathrm{d}(\cos x)}{(2+\cos x)(\cos^2x+1)}\\ &\xlongequal{u=\cos x}\displaystyle\int\cfrac{\mathrm{d}u}{(2+u)(u^2+1)}\\ &=\displaystyle\int\left[\cfrac{1}{6(u-1)}-\cfrac{1}{2(u+1)}+\cfrac{1}{3(u+2)}\right]\mathrm{d}u\\ &=\cfrac{1}{6}\ln|u-1|-\cfrac{1}{2}\ln|u+1|+\cfrac{1}{3}\ln|u+2|+C\\ &=\cfrac{1}{6}\ln(1-\cos x)-\cfrac{1}{2}\ln(1+\cos x)+\cfrac{1}{3}\ln(2+\cos x)+C. \end{aligned} (2+cosx)sinxdx=(2+cosx)(cos2x+1)d(cosx)u=cosx (2+u)(u2+1)du=[6(u1)12(u+1)1+3(u+2)1]du=61lnu121lnu+1+31lnu+2+C=61ln(1cosx)21ln(1+cosx)+31ln(2+cosx)+C.
这道题主要利用三角函数换元和因式分解积分

(40) ∫ sin ⁡ x cos ⁡ x sin ⁡ x + cos ⁡ x d x ; \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x; sinx+cosxsinxcosxdx;

解一
∫ sin ⁡ x cos ⁡ x sin ⁡ x + cos ⁡ x d x = ∫ 1 2 ( sin ⁡ x + cos ⁡ x ) 2 − 1 2 sin ⁡ x + cos ⁡ x d x = 1 2 ∫ ( sin ⁡ x + cos ⁡ x ) d x − 1 2 ∫ 1 sin ⁡ x + cos ⁡ x d x = 1 2 ( − cos ⁡ x + sin ⁡ x ) − 1 2 ∫ 1 sin ⁡ x + cos ⁡ x d x . \begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\cfrac{1}{2}(\sin x+\cos x)^2-\cfrac{1}{2}}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int(\sin x+\cos x)\mathrm{d}x-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}(-\cos x+\sin x)-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x. \end{aligned} sinx+cosxsinxcosxdx=sinx+cosx21(sinx+cosx)221dx=21(sinx+cosx)dx21sinx+cosx1dx=21(cosx+sinx)21sinx+cosx1dx.
  令 u = tan ⁡ x 2 u=\tan\cfrac{x}{2} u=tan2x,则 sin ⁡ x = 2 u 1 + u 2 , cos ⁡ x = 1 − u 2 1 + u 2 , d x = 2 1 + u 2 d u \sin x=\cfrac{2u}{1+u^2},\cos x=\cfrac{1-u^2}{1+u^2},\mathrm{d}x=\cfrac{2}{1+u^2}\mathrm{d}u sinx=1+u22u,cosx=1+u21u2,dx=1+u22du,故有
∫ 1 sin ⁡ x + cos ⁡ x d x = ∫ 2 2 u + 1 − u 2 d u = − ∫ 2 ( u − 1 ) 2 − ( 2 ) 2 d u = − 1 2 ∫ 2 u − 1 − 2 d u + 1 2 ∫ 2 u − 1 + 2 d u = 1 2 ln ⁡ ∣ u − 1 + 2 u − 1 − 2 ∣ + C ′ . \begin{aligned} \displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{2}{2u+1-u^2}\mathrm{d}u=-\displaystyle\int\cfrac{2}{(u-1)^2-(\sqrt{2})^2}\mathrm{d}u\\ &=-\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1-\sqrt{2}}\mathrm{d}u+\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1+\sqrt{2}}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\ln\left|\cfrac{u-1+\sqrt{2}}{u-1-\sqrt{2}}\right|+C'. \end{aligned} sinx+cosx1dx=2u+1u22du=(u1)2(2 )22du=2 1u12 2du+2 1u1+2 2du=2 1lnu12 u1+2 +C.
  因此有
∫ sin ⁡ x cos ⁡ x sin ⁡ x + cos ⁡ x d x = 1 2 ( sin ⁡ x − cos ⁡ x ) − 1 2 2 ln ⁡ ∣ tan ⁡ x 2 − 1 + 2 tan ⁡ x 2 − 1 − 2 ∣ + C . \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x=\cfrac{1}{2}(\sin x-\cos x)-\cfrac{1}{2\sqrt{2}}\ln\left|\cfrac{\tan\cfrac{x}{2}-1+\sqrt{2}}{\tan\cfrac{x}{2}-1-\sqrt{2}}\right|+C. sinx+cosxsinxcosxdx=21(sinxcosx)22 1lntan2x12 tan2x1+2 +C.
解二
∫ sin ⁡ x cos ⁡ x sin ⁡ x + cos ⁡ x d x = ∫ sin ⁡ x cos ⁡ x 2 sin ⁡ ( x + π 4 ) d x = u = x + π 4 ∫ 2 sin ⁡ 2 u − 1 2 2 sin ⁡ u d u = 1 2 ∫ sin ⁡ u d u − 1 2 2 ∫ csc ⁡ u d u = − cos ⁡ ( x + π 4 ) 2 − 1 2 2 ln ⁡ ∣ csc ⁡ ( x + π 4 ) − cot ⁡ ( x + π 4 ) ∣ + V . \begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x\cos x}{\sqrt{2}\sin\left(x+\cfrac{\pi}{4}\right)}\mathrm{d}x\xlongequal{u=x+\cfrac{\pi}{4}}\displaystyle\int\cfrac{2\sin^2u-1}{2\sqrt{2}\sin u}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\displaystyle\int\sin u\mathrm{d}u-\cfrac{1}{2\sqrt{2}}\displaystyle\int\csc u\mathrm{d}u\\ &=-\cfrac{\cos\left(x+\cfrac{\pi}{4}\right)}{\sqrt{2}}-\cfrac{1}{2\sqrt{2}}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+V. \end{aligned} sinx+cosxsinxcosxdx=2 sin(x+4π)sinxcosxdxu=x+4π 22 sinu2sin2u1du=2 1sinudu22 1cscudu=2 cos(x+4π)22 1lncsc(x+4π)cot(x+4π)+V.
这道题主要利用万能公式或三角函数换元积分求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。
  另,参考的积分表及公式见附录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值