第四章 不定积分(一)

在第二章中,我们讨论了如何求一个函数的导函数问题,本章将讨论它的反问题,即要寻找一个可导函数,使它的导函数等于已知函数。——高等数学同济版

目录

习题4-1 不定积分的概念与性质

  本节主要介绍不定积分的基础定义与性质。

2.求下列不定积分:

(13) ∫ ( 2 e x + 3 x ) d x ; \displaystyle\int\left(2e^x+\cfrac{3}{x}\right)\mathrm{d}x; (2ex+x3)dx;


∫ ( 2 e x + 3 x ) d x = 2 ∫ e x d x + 3 ∫ d x x = 2 e x + 3 ln ⁡ ∣ x ∣ + C . \displaystyle\int\left(2e^x+\cfrac{3}{x}\right)\mathrm{d}x=2\displaystyle\int e^x\mathrm{d}x+3\displaystyle\int\cfrac{\mathrm{d}x}{x}=2e^x+3\ln|x|+C. (2ex+x3)dx=2exdx+3xdx=2ex+3lnx+C.
这道题在积分时容易忘记加上绝对值

习题4-2 换元积分法

本节把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元积分法,简称换元法。

  本节主要介绍了两类换元积分法。

2.求下列不定积分(其中 a a a b b b ω \omega ω φ \varphi φ均为常数)

(16) ∫ d x x ln ⁡ x ln ⁡ ln ⁡ x ; \displaystyle\int\cfrac{\mathrm{d}x}{x\ln x\ln\ln x}; xlnxlnlnxdx;


∫ d x x ln ⁡ x ln ⁡ ln ⁡ x = ∫ d ( ln ⁡ x ) ln ⁡ x ln ⁡ ln ⁡ x ∫ d ( ln ⁡ ln ⁡ x ) ln ⁡ ln ⁡ x = ln ⁡ ∣ ln ⁡ ln ⁡ x ∣ + C . \displaystyle\int\cfrac{\mathrm{d}x}{x\ln x\ln\ln x}=\displaystyle\int\cfrac{\mathrm{d}(\ln x)}{\ln x\ln\ln x}\displaystyle\int\cfrac{\mathrm{d}(\ln\ln x)}{\ln\ln x}=\ln|\ln\ln x|+C. xlnxlnlnxdx=lnxlnlnxd(lnx)lnlnxd(lnlnx)=lnlnlnx+C.
这道题表明在题目中包含 x > 0 x>0 x>0这个条件时, ∫ d x x = ln ⁡ x \displaystyle\int\cfrac{\mathrm{d}x}{x}=\ln x xdx=lnx

(21) ∫ 1 + ln ⁡ x ( x ln ⁡ x ) 2 d x ; \displaystyle\int\cfrac{1+\ln x}{(x\ln x)^2}\mathrm{d}x; (xlnx)21+lnxdx;


∫ 1 + ln ⁡ x ( x ln ⁡ x ) 2 d x = ∫ d ( x ln ⁡ x ) ( x ln ⁡ x ) 2 = − 1 x ln ⁡ x + C . \displaystyle\int\cfrac{1+\ln x}{(x\ln x)^2}\mathrm{d}x=\displaystyle\int\cfrac{\mathrm{d}(x\ln x)}{(x\ln x)^2}=-\cfrac{1}{x\ln x}+C. (xlnx)21+lnxdx=(xlnx)2d(xlnx)=xlnx1+C.
这道题主要利用 ( 1 + ln ⁡ x ) d x = d ( x ln ⁡ x ) (1+\ln x)\mathrm{d}x=\mathrm{d}(x\ln x) (1+lnx)dx=d(xlnx)求解

(35) ∫ x x 2 − x − 2 d x ; \displaystyle\int\cfrac{x}{x^2-x-2}\mathrm{d}x; x2x2xdx;


∫ x x 2 − x − 2 d x = ∫ x ( x − 2 ) ( x + 1 ) d x = ∫ 1 3 ( 2 x − 2 + 1 x + 1 ) d x = 2 3 ln ⁡ ∣ x − 2 ∣ + 1 3 ln ⁡ ∣ x + 1 ∣ + C . \begin{aligned} \displaystyle\int\cfrac{x}{x^2-x-2}\mathrm{d}x&=\displaystyle\int\cfrac{x}{(x-2)(x+1)}\mathrm{d}x=\displaystyle\int\cfrac{1}{3}\left(\cfrac{2}{x-2}+\cfrac{1}{x+1}\right)\mathrm{d}x\\ &=\cfrac{2}{3}\ln|x-2|+\cfrac{1}{3}\ln|x+1|+C. \end{aligned} x2x2xdx=(x2)(x+1)xdx=31(x22+x+11)dx=32lnx2+31lnx+1+C.
这道题利用分解因式并进行凑整进行求导

(36) ∫ x 2 d x a 2 − x 2 ( a > 0 ) ; \displaystyle\int\cfrac{x^2\mathrm{d}x}{\sqrt{a^2-x^2}}(a>0); a2x2 x2dx(a>0);

  设 x = a sin ⁡ u ( − π 2 < u < π 2 ) x=a\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) x=asinu(2π<u<2π),则 a 2 − x 2 = a cos ⁡ u , d x = a cos ⁡ u d u \sqrt{a^2-x^2}=a\cos u,\mathrm{d}x=a\cos u\mathrm{d}u a2x2 =acosu,dx=acosudu,于是
∫ x 2 d x a 2 − x 2 = ∫ a 2 sin ⁡ 2 u d u = a 2 ∫ 1 − cos ⁡ 2 u 2 d u = a 2 2 ( u − sin ⁡ 2 u 2 ) + C = a 2 2 arcsin ⁡ x a − x a 2 − x 2 2 + C . \begin{aligned} \displaystyle\int\cfrac{x^2\mathrm{d}x}{\sqrt{a^2-x^2}}&=\displaystyle\int a^2\sin^2u\mathrm{d}u=a^2\displaystyle\int\cfrac{1-\cos2u}{2}\mathrm{d}u\\ &=\cfrac{a^2}{2}\left(u-\cfrac{\sin2u}{2}\right)+C\\ &=\cfrac{a^2}{2}\arcsin\cfrac{x}{a}-\cfrac{x\sqrt{a^2-x^2}}{2}+C. \end{aligned} a2x2 x2dx=a2sin2udu=a221cos2udu=2a2(u2sin2u)+C=2a2arcsinax2xa2x2 +C.
这道题在进行换元时,为了保证只含根号的式子不小于0,对于 u u u进行了大小限制

(37) ∫ d x x x 2 − 1 ; \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}; xx21 dx;

  当 x > 1 x>1 x>1时,
∫ d x x x 2 − 1 = x = 1 t − ∫ d t 1 − t 2 = − arcsin ⁡ t + C = − arcsin ⁡ 1 x + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}&\xlongequal{x=\cfrac{1}{t}}-\displaystyle\int\cfrac{\mathrm{d}t}{\sqrt{1-t^2}}=-\arcsin t+C\\ &=-\arcsin\cfrac{1}{x}+C. \end{aligned} xx21 dxx=t1 1t2 dt=arcsint+C=arcsinx1+C.
  当 x < − 1 x<-1 x<1时,
∫ d x x x 2 − 1 = x = 1 t ∫ d t 1 − t 2 = arcsin ⁡ t + C = arcsin ⁡ 1 x + C . \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}\xlongequal{x=\cfrac{1}{t}}\displaystyle\int\cfrac{\mathrm{d}t}{\sqrt{1-t^2}}=\arcsin t+C=\arcsin\cfrac{1}{x}+C. xx21 dxx=t1 1t2 dt=arcsint+C=arcsinx1+C.
  故在 ( − ∞ , − 1 ) (-\infty,-1) (,1) ( 1 , + ∞ ) (1,+\infty) (1,+)内,有
∫ d x x x 2 − 1 = − arcsin ⁡ 1 ∣ x ∣ + C \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}=-\arcsin\cfrac{1}{|x|}+C xx21 dx=arcsinx1+C
这道题表明对于不连续的不定积分可以进行分段求解

(38) ∫ d x ( x 2 + 1 ) 3 ; \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{(x^2+1)^3}}; (x2+1)3 dx;

  设 x = tan ⁡ u ( − π 2 < u < π 2 ) x=\tan u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) x=tanu(2π<u<2π),则 x 2 + 1 = sec ⁡ u , d x = sec ⁡ 2 u d u \sqrt{x^2+1}=\sec u,\mathrm{d}x=\sec^2u\mathrm{d}u x2+1 =secu,dx=sec2udu,于是
∫ d x ( x 2 + 1 ) 3 = ∫ cos ⁡ u d u = sin ⁡ u + C = x 1 + x 2 + C . \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{(x^2+1)^3}}=\displaystyle\int\cos u\mathrm{d}u=\sin u+C=\cfrac{x}{\sqrt{1+x^2}}+C. (x2+1)3 dx=cosudu=sinu+C=1+x2 x+C.
这道题说明对于可以取任意值的变量可以替换成 tan ⁡ x \tan x tanx求解

(39) ∫ x 2 − 9 x d x ; \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x; xx29 dx;

  当 x > 3 x>3 x>3时,令 x = 3 sec ⁡ u ( 0 ⩽ u < π 2 ) , x=3\sec u\left(0\leqslant u<\cfrac{\pi}{2}\right), x=3secu(0u<2π),
∫ x 2 − 9 x d x = ∫ 3 tan ⁡ 2 u d u = 3 ∫ ( sec ⁡ 2 u − 1 ) d u = 3 tan ⁡ u − 3 u + C = x 2 − 9 − 3 arccos ⁡ 3 x + C . \begin{aligned} \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x&=\displaystyle\int3\tan^2u\mathrm{d}u=3\displaystyle\int(\sec^2u-1)\mathrm{d}u=3\tan u-3u+C\\ &=\sqrt{x^2-9}-3\arccos\cfrac{3}{x}+C. \end{aligned} xx29 dx=3tan2udu=3(sec2u1)du=3tanu3u+C=x29 3arccosx3+C.
  当 x < − 3 x<-3 x<3时,令 x = 3 sec ⁡ u ( π 2 < u ⩽ π ) , x=3\sec u\left(\cfrac{\pi}{2}< u\leqslant\pi\right), x=3secu(2π<uπ),
∫ x 2 − 9 x d x = − ∫ 3 tan ⁡ 2 u d u = − 3 ∫ ( sec ⁡ 2 u − 1 ) d u = − 3 tan ⁡ u + 3 u + C ′ = x 2 − 9 + 3 arccos ⁡ 3 x + C ′ = x 2 − 9 − 3 arccos ⁡ 3 − x + C + 3 π . \begin{aligned} \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x&=-\displaystyle\int3\tan^2u\mathrm{d}u=-3\displaystyle\int(\sec^2u-1)\mathrm{d}u=-3\tan u+3u+C'\\ &=\sqrt{x^2-9}+3\arccos\cfrac{3}{x}+C'\\ &=\sqrt{x^2-9}-3\arccos\cfrac{3}{-x}+C+3\pi. \end{aligned} xx29 dx=3tan2udu=3(sec2u1)du=3tanu+3u+C=x29 +3arccosx3+C=x29 3arccosx3+C+3π.
  故可以统一写作 ∫ x 2 − 9 x d x = x 2 − 9 − 3 arccos ⁡ 3 ∣ x ∣ + C \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x=\sqrt{x^2-9}-3\arccos\cfrac{3}{|x|}+C xx29 dx=x29 3arccosx3+C这道题表明对于 x > 1 x>1 x>1 x x x变量可以使用 sec ⁡ u \sec u secu来换元

(41) ∫ d x 1 + 1 − x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{1+\sqrt{1-x^2}}; 1+1x2 dx;

  令 x = sin ⁡ t ( − π 2 < t < π 2 ) x=\sin t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right) x=sint(2π<t<2π),则 1 − x 2 = cos ⁡ t , d x = cos ⁡ t d t \sqrt{1-x^2}=\cos t,\mathrm{d}x=\cos t\mathrm{d}t 1x2 =cost,dx=costdt,于是
∫ d x 1 + 1 − x 2 = ∫ cos ⁡ t 1 + cos ⁡ t d t = ∫ 2 cos ⁡ 2 t 2 − 1 2 cos ⁡ 2 t 2 = t − tan ⁡ t 2 + C = t − sin ⁡ t 1 + cos ⁡ t + C = arcsin ⁡ x − x 1 + 1 − x 2 + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{1+\sqrt{1-x^2}}&=\displaystyle\int\cfrac{\cos t}{1+\cos t}\mathrm{d}t=\displaystyle\int\cfrac{2\cos^2\cfrac{t}{2}-1}{2\cos^2\cfrac{t}{2}}=t-\tan\cfrac{t}{2}+C\\ &=t-\cfrac{\sin t}{1+\cos t}+C=\arcsin x-\cfrac{x}{1+\sqrt{1-x^2}}+C. \end{aligned} 1+1x2 dx=1+costcostdt=2cos22t2cos22t1=ttan2t+C=t1+costsint+C=arcsinx1+1x2 x+C.
这道题表明当 x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1)时,可以用 sin ⁡ x \sin x sinx替换

(42) ∫ d x x + 1 − x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}; x+1x2 dx;

  设 x = sin ⁡ t ( − π 4 < t < π 2 ) x=\sin t\left(-\cfrac{\pi}{4}<t<\cfrac{\pi}{2}\right) x=sint(4π<t<2π),则 1 − x 2 = cos ⁡ t , d x = cos ⁡ t t \sqrt{1-x^2}=\cos t,\mathrm{d}x=\cos t\mathrm{t} 1x2 =cost,dx=costt,于是
∫ d x x + 1 − x 2 = ∫ cos ⁡ t d t sin ⁡ t + cos ⁡ t . \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}=\displaystyle\int\cfrac{\cos t\mathrm{d}t}{\sin t+\cos t}. x+1x2 dx=sint+costcostdt.
  记 I 1 = ∫ cos ⁡ t d t sin ⁡ t + cos ⁡ t , I 2 = ∫ sin ⁡ t d t sin ⁡ t + cos ⁡ t I_1=\displaystyle\int\cfrac{\cos t\mathrm{d}t}{\sin t+\cos t},I_2=\displaystyle\int\cfrac{\sin t\mathrm{d}t}{\sin t+\cos t} I1=sint+costcostdt,I2=sint+costsintdt,利用
I 1 + I 2 = ∫ d t = t + C , I 1 − I 2 = ∫ cos ⁡ t − sin ⁡ t sin ⁡ t + cos ⁡ t d t = ∫ d ( cos ⁡ t + sin ⁡ t ) sin ⁡ t + cos ⁡ t = ln ⁡ ∣ sin ⁡ t + cos ⁡ t ∣ + C . \begin{aligned} I_1+I_2&=\displaystyle\int\mathrm{d}t=t+C,\\ I_1-I_2&=\displaystyle\int\cfrac{\cos t-\sin t}{\sin t+\cos t}\mathrm{d}t=\displaystyle\int\cfrac{\mathrm{d}(\cos t+\sin t)}{\sin t+\cos t}=\ln|\sin t+\cos t|+C. \end{aligned} I1+I2I1I2=dt=t+C,=sint+costcostsintdt=sint+costd(cost+sint)=lnsint+cost+C.
  求得
I 1 = ∫ cos ⁡ t d t sin ⁡ t + cos ⁡ t = 1 2 ( t + ln ⁡ ∣ sin ⁡ t + cos ⁡ t ∣ ) + C , I_1=\displaystyle\int\cfrac{\cos t\mathrm{d}t}{\sin t+\cos t}=\cfrac{1}{2}(t+\ln|\sin t+\cos t|)+C, I1=sint+costcostdt=21(t+lnsint+cost)+C,
  即求得在 ( − 2 2 , 1 ) (-\cfrac{\sqrt{2}}{2},1) (22 ,1)内,有
∫ d x x + 1 − x 2 = 1 2 ( arcsin ⁡ x + ln ⁡ ∣ x + 1 − x 2 ∣ ) + C . \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}=\cfrac{1}{2}(\arcsin x+\ln|x+\sqrt{1-x^2}|)+C. x+1x2 dx=21(arcsinx+lnx+1x2 )+C.
  再设 x = sin ⁡ t ( − π 2 < t < − π 4 ) x=\sin t\left(-\cfrac{\pi}{2}<t<-\cfrac{\pi}{4}\right) x=sint(2π<t<4π),重复上面过程,可得在 ( − 1 , − 2 2 ) (-1,-\cfrac{\sqrt{2}}{2}) (1,22 )内有与上面不定积分形式相同的结果。从而在 ( − 1 , − 2 2 ) (-1,-\cfrac{\sqrt{2}}{2}) (1,22 ) ( − 2 2 , 1 ) (-\cfrac{\sqrt{2}}{2},1) (22 ,1)内,有
∫ d x x + 1 − x 2 = 1 2 ( arcsin ⁡ x + ln ⁡ ∣ x + 1 − x 2 ∣ ) + C . \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}=\cfrac{1}{2}(\arcsin x+\ln|x+\sqrt{1-x^2}|)+C. x+1x2 dx=21(arcsinx+lnx+1x2 )+C.
这道题主要是利用自变量的区间来进行分段确定不定积分的结果

(43) ∫ x 3 + 1 ( x 2 + 1 ) 2 d x ; \displaystyle\int\cfrac{x^3+1}{(x^2+1)^2}\mathrm{d}x; (x2+1)2x3+1dx;

  设 x = tan ⁡ t ( − π 2 < t < π 2 ) x=\tan t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right) x=tant(2π<t<2π),则 x 2 + 1 = sec ⁡ 2 t , d x = sec ⁡ 2 t d t x^2+1=\sec^2 t,\mathrm{d}x=\sec^2t\mathrm{d}t x2+1=sec2t,dx=sec2tdt,于是
∫ x 3 + 1 ( x 2 + 1 ) 2 d x = ∫ tan ⁡ 3 t + 1 sec ⁡ 2 t d t = ∫ cos ⁡ 2 t − 1 cos ⁡ t d ( cos ⁡ t ) + ∫ 1 + cos ⁡ 2 t 2 d t = 1 2 cos ⁡ 2 t − ln ⁡ cos ⁡ t + t 2 + 1 4 sin ⁡ 2 t + C = 1 2 cos ⁡ 2 t − ln ⁡ cos ⁡ t + t 2 + 1 2 sin ⁡ t cos ⁡ t + C \begin{aligned} \displaystyle\int\cfrac{x^3+1}{(x^2+1)^2}\mathrm{d}x&=\displaystyle\int\cfrac{\tan^3t+1}{\sec^2t}\mathrm{d}t\\ &=\displaystyle\int\cfrac{\cos^2t-1}{\cos t}\mathrm{d}(\cos t)+\displaystyle\int\cfrac{1+\cos2t}{2}\mathrm{d}t\\ &=\cfrac{1}{2}\cos^2t-\ln\cos t+\cfrac{t}{2}+\cfrac{1}{4}\sin2t+C\\ &=\cfrac{1}{2}\cos^2t-\ln\cos t+\cfrac{t}{2}+\cfrac{1}{2}\sin t\cos t+C \end{aligned} (x2+1)2x3+1dx=sec2ttan3t+1dt=costcos2t1d(cost)+21+cos2tdt=21cos2tlncost+2t+41sin2t+C=21cos2tlncost+2t+21sintcost+C
  按 tan ⁡ t = x \tan t=x tant=x作辅助三角形,便有
在这里插入图片描述
cos ⁡ t = 1 1 + x 2 , sin ⁡ t = x 1 + x 2 . \cos t=\cfrac{1}{\sqrt{1+x^2}},\quad\sin t=\cfrac{x}{\sqrt{1+x^2}}. cost=1+x2 1,sint=1+x2 x.
  于是
∫ x 3 + 1 ( x 2 + 1 ) 2 d x = 1 + x 2 ( 1 + x 2 ) + 1 2 ln ⁡ ( 1 + x 2 ) + 1 2 arctan ⁡ x + C . \displaystyle\int\cfrac{x^3+1}{(x^2+1)^2}\mathrm{d}x=\cfrac{1+x}{2(1+x^2)}+\cfrac{1}{2}\ln(1+x^2)+\cfrac{1}{2}\arctan x+C. (x2+1)2x3+1dx=2(1+x2)1+x+21ln(1+x2)+21arctanx+C.
这道题表明有时可以借助辅助三角形求解

习题4-3 分部积分法

  本节主要介绍了分部积分法。

求下列不定积分:

18. ∫ ln ⁡ 3 x x 2 d x \displaystyle\int\cfrac{\ln^3x}{x^2}\mathrm{d}x x2ln3xdx


∫ ln ⁡ 3 x x 2 d x = ∫ − ln ⁡ 3 x d ( 1 x ) = − ln ⁡ 3 x x − 3 ∫ ln ⁡ 2 x d ( 1 x ) = − ln ⁡ 3 x x − 3 [ ln ⁡ 2 x x + 2 ∫ ln ⁡ x d ( 1 x ) ] = − ln ⁡ 3 x + 3 ln ⁡ 2 x + 6 ln ⁡ x + 6 x + C . \begin{aligned} \displaystyle\int\cfrac{\ln^3x}{x^2}\mathrm{d}x&=\displaystyle\int-\ln^3x\mathrm{d}\left(\cfrac{1}{x}\right)=-\cfrac{\ln^3x}{x}-3\displaystyle\int\ln^2x\mathrm{d}\left(\cfrac{1}{x}\right)\\ &=-\cfrac{\ln^3x}{x}-3\left[\cfrac{\ln^2x}{x}+2\displaystyle\int\ln x\mathrm{d}\left(\cfrac{1}{x}\right)\right]\\ &=-\cfrac{\ln^3x+3\ln^2x+6\ln x+6}{x}+C. \end{aligned} x2ln3xdx=ln3xd(x1)=xln3x3ln2xd(x1)=xln3x3[xln2x+2lnxd(x1)]=xln3x+3ln2x+6lnx+6+C.
这道题说明可以采用不同的分部方式来进行计算

习题4-4 有理函数的积分

  本节主要介绍了有理函数的积分及可化为有理函数的积分。

求下列不定积分:

5. ∫ 3 x 3 + 1 d x . \displaystyle\int\cfrac{3}{x^3+1}\mathrm{d}x. x3+13dx.


∫ 3 x 3 + 1 d x = ∫ 3 ( 1 + x ) ( x 2 − x + 1 ) d x = ∫ ( 1 x + 1 + 2 − x x 2 − x + 1 ) d x = ln ⁡ ∣ 1 + x ∣ − 1 2 ∫ ( x 2 − x + 1 ) ′ x 2 − x + 1 d x + 3 2 ∫ 1 x 2 − x + 1 d x = ln ⁡ ∣ 1 + x ∣ − 1 2 ln ⁡ ( x 2 − x + 1 ) + 3 ∫ 1 ( 2 x − 1 3 ) 2 + 1 d ( 2 x − 1 3 ) = ln ⁡ ∣ 1 + x ∣ − 1 2 ln ⁡ ( x 2 − x + 1 ) + 3 arctan ⁡ 2 x − 1 3 + C . \begin{aligned} \displaystyle\int\cfrac{3}{x^3+1}\mathrm{d}x&=\displaystyle\int\cfrac{3}{(1+x)(x^2-x+1)}\mathrm{d}x=\displaystyle\int\left(\cfrac{1}{x+1}+\cfrac{2-x}{x^2-x+1}\right)\mathrm{d}x\\ &=\ln|1+x|-\cfrac{1}{2}\displaystyle\int\cfrac{(x^2-x+1)'}{x^2-x+1}\mathrm{d}x+\cfrac{3}{2}\displaystyle\int\cfrac{1}{x^2-x+1}\mathrm{d}x\\ &=\ln|1+x|-\cfrac{1}{2}\ln(x^2-x+1)+\sqrt{3}\displaystyle\int\cfrac{1}{\left(\cfrac{2x-1}{\sqrt{3}}\right)^2+1}\mathrm{d}\left(\cfrac{2x-1}{\sqrt{3}}\right)\\ &=\ln|1+x|-\cfrac{1}{2}\ln(x^2-x+1)+\sqrt{3}\arctan\cfrac{2x-1}{\sqrt{3}}+C. \end{aligned} x3+13dx=(1+x)(x2x+1)3dx=(x+11+x2x+12x)dx=ln1+x21x2x+1(x2x+1)dx+23x2x+11dx=ln1+x21ln(x2x+1)+3 (3 2x1)2+11d(3 2x1)=ln1+x21ln(x2x+1)+3 arctan3 2x1+C.
这道题先使用待定系数确定分解后的因式的分子上的系数,再对不可分解的因式进行拆分,分母化为平方和并进行积分

12. ∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x . \displaystyle\int\cfrac{(x+1)^2}{(x^2+1)^2}\mathrm{d}x. (x2+1)2(x+1)2dx.


∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = ∫ x 2 + 1 ( x + 1 ) 2 d x + ∫ 2 x d x ( x + 1 ) 2 = arctan ⁡ x − 1 x 2 + 1 + C . \begin{aligned} \displaystyle\int\cfrac{(x+1)^2}{(x^2+1)^2}\mathrm{d}x&=\displaystyle\int\cfrac{x^2+1}{(x+1)^2}\mathrm{d}x+\displaystyle\int\cfrac{2x\mathrm{d}x}{(x+1)^2}\\ &=\arctan x-\cfrac{1}{x^2+1}+C. \end{aligned} (x2+1)2(x+1)2dx=(x+1)2x2+1dx+(x+1)22xdx=arctanxx2+11+C.
这道题需要把分子上的式子拆分成易于积分的几部分再进行运算

13. ∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x \displaystyle\int\cfrac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x (x2+x+1)2x22dx


∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x = ∫ [ − 1 x 2 + x + 1 + x − 1 ( x 2 + x + 1 ) 2 ] d x = − ∫ 1 x 2 + x + 1 d x + 1 2 ∫ d ( x 2 + x + 1 ) x 2 + x + 1 − 3 2 ∫ 1 ( x 2 + x + 1 ) 2 d x . \begin{aligned} &\displaystyle\int\cfrac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x=\displaystyle\int\left[-\cfrac{1}{x^2+x+1}+\cfrac{x-1}{(x^2+x+1)^2}\right]\mathrm{d}x\\ &=-\displaystyle\int\cfrac{1}{x^2+x+1}\mathrm{d}x+\cfrac{1}{2}\displaystyle\int\cfrac{\mathrm{d}(x^2+x+1)}{x^2+x+1}-\cfrac{3}{2}\displaystyle\int\cfrac{1}{(x^2+x+1)^2}\mathrm{d}x. \end{aligned} (x2+x+1)2x22dx=[x2+x+11+(x2+x+1)2x1]dx=x2+x+11dx+21x2+x+1d(x2+x+1)23(x2+x+1)21dx.
  令 u = x + 1 2 u=x+\cfrac{1}{2} u=x+21,并记 a = 3 2 a=\cfrac{\sqrt{3}}{2} a=23 ,则
∫ 1 ( x 2 + x + 1 ) 2 d x = ∫ 1 ( u 2 + a 2 ) 2 d u = 1 2 a 2 [ u u 2 + a 2 + ∫ 1 u 2 + a 2 d u ] = u 2 a 2 ( u 2 + a 2 ) + 1 2 a 2 ∫ 1 u 2 + a 2 d u . \begin{aligned} \displaystyle\int\cfrac{1}{(x^2+x+1)^2}\mathrm{d}x&=\displaystyle\int\cfrac{1}{(u^2+a^2)^2}\mathrm{d}u=\cfrac{1}{2a^2}\left[\cfrac{u}{u^2+a^2}+\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u\right]\\ &=\cfrac{u}{2a^2(u^2+a^2)}+\cfrac{1}{2a^2}\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u. \end{aligned} (x2+x+1)21dx=(u2+a2)21du=2a21[u2+a2u+u2+a21du]=2a2(u2+a2)u+2a21u2+a21du.
  由此得
∫ 1 x 2 + x + 1 d x + 3 2 ∫ 1 ( x 2 + x + 1 ) 2 d x = ∫ 1 u 2 + a 2 d u + 3 2 [ u 2 a 2 ( u 2 + a 2 ) + 1 2 a 2 ∫ 1 u 2 + a 2 d u ] = 3 u 4 a 2 ( u 2 + a 2 ) + ( 3 4 a 2 + 1 ) ∫ 1 u 2 + a 2 d u = 3 u 4 a 2 ( u 2 + a 2 ) + 1 a ( 3 4 a 2 + 1 ) arctan ⁡ u a + C 1 = 2 x + 1 2 ( x 2 + x + 1 ) + 4 3 arctan ⁡ 2 x + 1 3 + C 1 . \begin{aligned} &\displaystyle\int\cfrac{1}{x^2+x+1}\mathrm{d}x+\cfrac{3}{2}\displaystyle\int\cfrac{1}{(x^2+x+1)^2}\mathrm{d}x\\ =&\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u+\cfrac{3}{2}\left[\cfrac{u}{2a^2(u^2+a^2)}+\cfrac{1}{2a^2}\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u\right]\\ =&\cfrac{3u}{4a^2(u^2+a^2)}+\left(\cfrac{3}{4a^2}+1\right)\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u\\ =&\cfrac{3u}{4a^2(u^2+a^2)}+\cfrac{1}{a}\left(\cfrac{3}{4a^2}+1\right)\arctan\cfrac{u}{a}+C_1\\ =&\cfrac{2x+1}{2(x^2+x+1)}+\cfrac{4}{\sqrt{3}}\arctan\cfrac{2x+1}{\sqrt{3}}+C_1. \end{aligned} ====x2+x+11dx+23(x2+x+1)21dxu2+a21du+23[2a2(u2+a2)u+2a21u2+a21du]4a2(u2+a2)3u+(4a23+1)u2+a21du4a2(u2+a2)3u+a1(4a23+1)arctanau+C12(x2+x+1)2x+1+3 4arctan3 2x+1+C1.
  因此有
∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x = − 1 2 ( x 2 + x + 1 ) − 2 x + 1 2 ( x 2 + x + 1 ) − 4 3 arctan ⁡ 2 x + 1 3 + C . \begin{aligned} \displaystyle\int\cfrac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x=&-\cfrac{1}{2(x^2+x+1)}-\cfrac{2x+1}{2(x^2+x+1)}-\cfrac{4}{\sqrt{3}}\arctan\cfrac{2x+1}{\sqrt{3}}+C. \end{aligned} (x2+x+1)2x22dx=2(x2+x+1)12(x2+x+1)2x+13 4arctan3 2x+1+C.
这道题通过逐步代换得到结果

15. ∫ d x 3 + cos ⁡ x . \displaystyle\int\cfrac{\mathrm{d}x}{3+\cos x}. 3+cosxdx.

  令 u = tan ⁡ x 2 u=\tan\cfrac{x}{2} u=tan2x,则
∫ d x 3 + cos ⁡ x = ∫ 1 3 + 1 − u 2 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 2 + u 2 d u = 1 2 arctan ⁡ u 2 + C = 1 2 arctan ⁡ tan ⁡ x 2 2 + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{3+\cos x}&=\displaystyle\int\cfrac{1}{3+\cfrac{1-u^2}{1+u^2}}\cdot\cfrac{2}{1+u^2}\mathrm{d}u=\displaystyle\int\cfrac{1}{2+u^2}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\arctan\cfrac{u}{\sqrt{2}}+C=\cfrac{1}{\sqrt{2}}\arctan\cfrac{\tan\cfrac{x}{2}}{\sqrt{2}}+C. \end{aligned} 3+cosxdx=3+1+u21u211+u22du=2+u21du=2 1arctan2 u+C=2 1arctan2 tan2x+C.
当式子中有三角函数时,可以用正切值代替

习题4-5 积分表的使用

  本节主要介绍了如何查阅积分表及其相关变形。(本节不在考纲中

写在最后

  总习题四难点比较多,综合性强,在下一篇《第四章 不定积分(二)》中详述。
  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。
  另,参考的积分表及公式见附录

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值