第十章 重积分

本章和下一章是多元函数积分学的内容。——高等数学同济版

目录

习题10-1 二重积分的概念与性质

  本节主要介绍二重积分的基础概念与性质。

习题10-2 二重积分的计算法

本节介绍一种计算二重积分的方法,这种方法是把二重积分化为两次单积分(即两次定积分)来计算。——高等数学同济版

  本节主要介绍了二重积分的基础计算方法。

15.选用适当的坐标计算下列各题:

(2) ∬ D 1 − x 2 − y 2 1 + x 2 + y 2 d σ \displaystyle\iint\limits_{D}\sqrt{\cfrac{1-x^2-y^2}{1+x^2+y^2}}\mathrm{d}\sigma D1+x2+y21x2y2 dσ,其中 D D D是由圆周 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1及坐标轴所围成的在第一象限内的闭区域;

  根据积分区域 D D D的形状和被积函数的特点,选用极坐标为宜。 D = { ( ρ , θ ) ∣ 0 ⩽ ρ ⩽ 1 , 0 ⩽ θ ⩽ π 2 } D=\left\{(\rho,\theta)\biggm\vert0\leqslant\rho\leqslant1,0\leqslant\theta\leqslant\cfrac{\pi}{2} \right\} D={(ρ,θ)0ρ1,0θ2π},故
原式 = ∬ D 1 − ρ 2 1 + ρ 2 ρ d ρ d θ = ∫ 0 π 2 d θ ∫ 0 1 1 − ρ 2 1 + ρ 2 ρ d ρ = π 2 ⋅ ∫ 0 1 1 − ρ 2 1 − ρ 4 ρ d ρ = π 2 ( ∫ 0 1 ρ 1 − ρ 4 d ρ − ∫ 0 1 ρ 3 1 − ρ 4 d ρ ) = π 2 [ 1 2 ∫ 0 1 1 1 − ρ 4 d ρ 2 + 1 4 ∫ 0 1 1 1 − ρ 4 d ( 1 − ρ 4 ) ] = π 2 ( 1 2 arcsin ⁡ ρ 2 ∣ 0 1 + 1 2 1 − ρ 4 ∣ 0 1 ) = π 8 ( π − 2 ) . \begin{aligned} \text{原式}&=\displaystyle\iint\limits_{D}\sqrt{\cfrac{1-\rho^2}{1+\rho^2}}\rho\mathrm{d}\rho\mathrm{d}\theta=\displaystyle\int^{\frac{\pi}{2}}_0\mathrm{d}\theta\displaystyle\int^1_0\sqrt{\cfrac{1-\rho^2}{1+\rho^2}}\rho\mathrm{d}\rho\\ &=\cfrac{\pi}{2}\cdot\displaystyle\int^1_0\cfrac{1-\rho^2}{\sqrt{1-\rho^4}}\rho\mathrm{d}\rho=\cfrac{\pi}{2}\left(\displaystyle\int^1_0\cfrac{\rho}{\sqrt{1-\rho^4}}\mathrm{d}\rho-\displaystyle\int^1_0\cfrac{\rho^3}{\sqrt{1-\rho^4}}\mathrm{d}\rho\right)\\ &=\cfrac{\pi}{2}\left[\cfrac{1}{2}\displaystyle\int^1_0\cfrac{1}{\sqrt{1-\rho^4}}\mathrm{d}\rho^2+\cfrac{1}{4}\displaystyle\int^1_0\cfrac{1}{\sqrt{1-\rho^4}}\mathrm{d}(1-\rho^4)\right]\\ &=\cfrac{\pi}{2}\left(\cfrac{1}{2}\arcsin\rho^2\biggm\vert^1_0+\cfrac{1}{2}\sqrt{1-\rho^4}\biggm\vert^1_0\right)\\ &=\cfrac{\pi}{8}(\pi-2). \end{aligned} 原式=D1+ρ21ρ2 ρdρdθ=02πdθ011+ρ21ρ2 ρdρ=2π011ρ4 1ρ2ρdρ=2π(011ρ4 ρdρ011ρ4 ρ3dρ)=2π[21011ρ4 1dρ2+41011ρ4 1d(1ρ4)]=2π(21arcsinρ201+211ρ4 01)=8π(π2).
这道题主要利用了极坐标系下的积分方法求解

习题10-3 三重积分

  本节主要介绍了三重积分的基本计算。

7.计算 ∭ Ω x z d x d y d z \displaystyle\iiint\limits_\varOmega xz\mathrm{d}x\mathrm{d}y\mathrm{d}z Ωxzdxdydz,其中是由平面 z = 0 z=0 z=0 z = y z=y z=y,以及抛物柱面 y = x 2 y=x^2 y=x2所围成的闭区域。

  由于积分区域 Ω \varOmega Ω关于面 y O z yOz yOz对称(即若点 ( x , y , z ) ∈ Ω (x,y,z)\in\varOmega (x,y,z)Ω,则 ( − x , y , z ) (-x,y,z) (x,y,z)也属于 Ω \varOmega Ω),且被积函数 x z xz xz关于 x x x是奇函数(即 ( − x ) z = − ( x z ) (-x)z=-(xz) (x)z=(xz)),因此
∭ Ω x z d x d y d z = 0. \displaystyle\iiint\limits_\varOmega xz\mathrm{d}x\mathrm{d}y\mathrm{d}z=0. Ωxzdxdydz=0.
这道题利用了函数的对称性求解

习题10-4 重积分的应用

  本节主要介绍了重积分的应用。

习题10-5 含参变量的积分

  本节主要介绍了含参变量的积分的解法。

4.应用对参数的微分法,计算下列积分:

(1) I = ∫ 0 π 2 ln ⁡ 1 + a cos ⁡ x 1 − a cos ⁡ x ⋅ d x cos ⁡ x ( ∣ a ∣ < 1 ) ; I=\displaystyle\int^{\frac{\pi}{2}}_0\ln\cfrac{1+a\cos x}{1-a\cos x}\cdot\cfrac{\mathrm{d}x}{\cos x}(|a|<1); I=02πln1acosx1+acosxcosxdx(a<1);

  设
φ ( α ) = ∫ 0 π 2 ln ⁡ 1 + α cos ⁡ x 1 − α cos ⁡ x ⋅ d x cos ⁡ x ( ∣ α ∣ ⩽ ∣ a ∣ < 1 ) . \varphi(\alpha)=\displaystyle\int^{\frac{\pi}{2}}_0\ln\cfrac{1+\alpha\cos x}{1-\alpha\cos x}\cdot\cfrac{\mathrm{d}x}{\cos x}(|\alpha|\leqslant|a|<1). φ(α)=02πln1αcosx1+αcosxcosxdx(αa<1).
  则 φ ( 0 ) = 0 \varphi(0)=0 φ(0)=0 φ ( a ) = I \varphi(a)=I φ(a)=I。由于
∂ ∂ α ( ∫ 0 π 2 ln ⁡ 1 + α cos ⁡ x 1 − α cos ⁡ x ⋅ 1 cos ⁡ x ) = 2 1 − α 2 cos ⁡ 2 x . \cfrac{\partial}{\partial\alpha}\left(\displaystyle\int^{\frac{\pi}{2}}_0\ln\cfrac{1+\alpha\cos x}{1-\alpha\cos x}\cdot\cfrac{1}{\cos x}\right)=\cfrac{2}{1-\alpha^2\cos^2x}. α(02πln1αcosx1+αcosxcosx1)=1α2cos2x2.
  故
φ ′ ( α ) = ∫ 0 π 2 2 1 − α 2 cos ⁡ 2 x d x = ∫ 0 π 2 2 d ( tan ⁡ x ) sec ⁡ 2 x − α 2 = 2 ∫ 0 π 2 d ( tan ⁡ x ) ( 1 − α 2 ) + tan ⁡ 2 x = 2 1 − α 2 [ arctan ⁡ tan ⁡ x 1 − α 2 ] ∣ 0 π 2 = 2 1 − α 2 ⋅ π 2 = π 1 − α 2 . \begin{aligned} \varphi'(\alpha)&=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{2}{1-\alpha^2\cos^2x}\mathrm{d}x=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{2\mathrm{d}(\tan x)}{\sec^2x-\alpha^2}\\ &=2\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\mathrm{d}(\tan x)}{(1-\alpha^2)+\tan^2x}\\ &=\cfrac{2}{\sqrt{1-\alpha^2}}\left[\arctan\cfrac{\tan x}{\sqrt{1-\alpha^2}}\right]\Biggm\vert^{\frac{\pi}{2}}_0\\ &=\cfrac{2}{\sqrt{1-\alpha^2}}\cdot\cfrac{\pi}{2}=\cfrac{\pi}{\sqrt{1-\alpha^2}}. \end{aligned} φ(α)=02π1α2cos2x2dx=02πsec2xα22d(tanx)=202π(1α2)+tan2xd(tanx)=1α2 2[arctan1α2 tanx]02π=1α2 22π=1α2 π.
  于是
I = φ ( a ) − φ ( 0 ) = ∫ 0 a φ ′ ( α ) d α = ∫ 0 a π 1 − α 2 d α = π arcsin ⁡ a . \begin{aligned} I&=\varphi(a)-\varphi(0)=\displaystyle\int^a_0\varphi'(\alpha)\mathrm{d}\alpha=\displaystyle\int^a_0\cfrac{\pi}{\sqrt{1-\alpha^2}}\mathrm{d}\alpha\\ &=\pi\arcsin a. \end{aligned} I=φ(a)φ(0)=0aφ(α)dα=0a1α2 πdα=πarcsina.
这道题主要利用了换元的方法求解

5.计算下列积分:

(1) ∫ 0 1 arctan ⁡ x x d x 1 − x 2 ; \displaystyle\int^1_0\cfrac{\arctan x}{x}\cfrac{\mathrm{d}x}{\sqrt{1-x^2}}; 01xarctanx1x2 dx;

  因为 arctan ⁡ x x = ∫ 0 1 d y 1 + x 2 y 2 \cfrac{\arctan x}{x}=\displaystyle\int^1_0\cfrac{\mathrm{d}y}{1+x^2y^2} xarctanx=011+x2y2dy,故
原式 = ∫ 0 1 ( ∫ 0 1 d y 1 + x 2 y 2 ) d x 1 − x 2 = ∫ 0 1 [ ∫ 0 1 d x ( 1 + x 2 y 2 ) 1 − x 2 ] d y . \begin{aligned} \text{原式}&=\displaystyle\int^1_0\left(\displaystyle\int^1_0\cfrac{\mathrm{d}y}{1+x^2y^2}\right)\cfrac{\mathrm{d}x}{\sqrt{1-x^2}}\\ &=\displaystyle\int^1_0\left[\displaystyle\int^1_0\cfrac{\mathrm{d}x}{(1+x^2y^2)\sqrt{1-x^2}}\right]\mathrm{d}y. \end{aligned} 原式=01(011+x2y2dy)1x2 dx=01[01(1+x2y2)1x2 dx]dy.
  由于
∫ 0 1 d x ( 1 + x 2 y 2 ) 1 − x 2 = x = sin ⁡ t ∫ 0 π 2 d t 1 + y 2 sin ⁡ 2 t = u = tan ⁡ t ∫ 0 + ∞ d u 1 + ( 1 + y 2 ) u 2 = 1 1 + y 2 [ arctan ⁡ ( 1 + y 2 u ) ] ∣ 0 + ∞ = π 2 1 + y 2 . \begin{aligned} \displaystyle\int^1_0\cfrac{\mathrm{d}x}{(1+x^2y^2)\sqrt{1-x^2}}&\xlongequal{x=\sin t}\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\mathrm{d}t}{1+y^2\sin^2t}\\ &\xlongequal{u=\tan t}\displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}u}{1+(1+y^2)u^2}\\ &=\cfrac{1}{\sqrt{1+y^2}}[\arctan(\sqrt{1+y^2}u)]\biggm\vert^{+\infty}_0\\ &=\cfrac{\pi}{2\sqrt{1+y^2}}. \end{aligned} 01(1+x2y2)1x2 dxx=sint 02π1+y2sin2tdtu=tant 0+1+(1+y2)u2du=1+y2 1[arctan(1+y2 u)]0+=21+y2 π.
  因此
原式 = ∫ 0 1 π 2 1 + y 2 = π 2 [ ln ⁡ ( y + 1 + y 2 ) ] ∣ 0 1 = π 2 ln ⁡ ( 1 + 2 ) . \begin{aligned} \text{原式}&=\displaystyle\int^1_0\cfrac{\pi}{2\sqrt{1+y^2}}=\cfrac{\pi}{2}[\ln(y+\sqrt{1+y^2})]\biggm\vert^1_0\\ &=\cfrac{\pi}{2}\ln(1+\sqrt{2}). \end{aligned} 原式=0121+y2 π=2π[ln(y+1+y2 )]01=2πln(1+2 ).
这道题主要利用了凑整的方法求解

总习题十

2.以下各题中给出了四个结论,从中选出一个正确的结论:

(3)设 f ( x ) f(x) f(x)为连续函数, F ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x F(t)=\displaystyle\int^t_1\mathrm{d}y\displaystyle\int^t_yf(x)\mathrm{d}x F(t)=1tdyytf(x)dx,则
( A ) 2 f ( 2 ) (A)2f(2) (A)2f(2)
( B ) f ( 2 ) (B)f(2) (B)f(2)
( C ) − f ( 2 ) (C)-f(2) (C)f(2)
( D ) 0 (D)0 (D)0

  考虑到 F ′ ( 2 ) F'(2) F(2),故可设 t > 1 t>1 t>1。对所给二重积分交换积分次序,得
F ( t ) = ∫ 1 t f ( x ) d x ∫ 1 x d y = ∫ 1 t ( x − 1 ) f ( x ) d x F(t)=\displaystyle\int^t_1f(x)\mathrm{d}x\displaystyle\int^x_1\mathrm{d}y=\displaystyle\int^t_1(x-1)f(x)\mathrm{d}x F(t)=1tf(x)dx1xdy=1t(x1)f(x)dx
  于是,
F ′ ( t ) = ( t − 1 ) f ( t ) . F'(t)=(t-1)f(t). F(t)=(t1)f(t).
  从而有 F ′ ( 2 ) = f ( 2 ) F'(2)=f(2) F(2)=f(2)。故选(B)。(这道题考察了多重积分导数的求解

7.设 f ( x , y ) f(x,y) f(x,y)在闭区域 D = { ( x , y ) ∣ x 2 + y 2 ⩽ y , x ⩾ 0 } D=\{(x,y)|x^2+y^2\leqslant y,x\geqslant0\} D={(x,y)x2+y2y,x0}上连续,且 f ( x , y ) = 1 − x 2 − y 2 − 8 π ∬ D f ( x , y ) d x d y . f(x,y)=\sqrt{1-x^2-y^2}-\cfrac{8}{\pi}\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y. f(x,y)=1x2y2 π8Df(x,y)dxdy. f ( x , y ) f(x,y) f(x,y)

  设 ∬ D f ( x , y ) d x d y = A \displaystyle\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y=A Df(x,y)dxdy=A,则
f ( x , y ) = 1 − x 2 − y 2 − 8 π A . f(x,y)=\sqrt{1-x^2-y^2}-\cfrac{8}{\pi}A. f(x,y)=1x2y2 π8A.
  从而
∬ D f ( x , y ) d x d y = ∬ D 1 − x 2 − y 2 d x d y − 8 π A ∬ D d x d y . \displaystyle\iint\limits_{D}f(x,y)\mathrm{d}x\mathrm{d}y=\displaystyle\iint\limits_{D}\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y-\cfrac{8}{\pi}A\displaystyle\iint\limits_{D}\mathrm{d}x\mathrm{d}y. Df(x,y)dxdy=D1x2y2 dxdyπ8ADdxdy.
  又
∬ D d x d y = D 的面积 = π 8 . \displaystyle\iint\limits_{D}\mathrm{d}x\mathrm{d}y=D\text{的面积}=\cfrac{\pi}{8}. Ddxdy=D的面积=8π.
  故得
A = ∬ D 1 − x 2 − y 2 d x d y − A . A=\displaystyle\iint\limits_{D}\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y-A. A=D1x2y2 dxdyA.
  因此
A = 1 2 ∬ D 1 − x 2 − y 2 d x d y . A=\cfrac{1}{2}\displaystyle\iint\limits_{D}\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y. A=21D1x2y2 dxdy.
  在极坐标系中,
D = { ( ρ , θ ) ∣ 0 ⩽ ρ ⩽ sin ⁡ θ , 0 ⩽ θ ⩽ π 2 } . D=\{(\rho,\theta)|0\leqslant\rho\leqslant\sin\theta,0\leqslant\theta\leqslant\cfrac{\pi}{2}\}. D={(ρ,θ)0ρsinθ,0θ2π}.
  因此
∬ D 1 − x 2 − y 2 d x d y = ∫ 0 π 2 d θ ∫ 0 sin ⁡ θ 1 − ρ 2 ρ d ρ = π 6 − 2 9 . \displaystyle\iint\limits_{D}\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y=\displaystyle\int^{\frac{\pi}{2}}_0\mathrm{d}\theta\displaystyle\int^{\sin\theta}_0\sqrt{1-\rho^2}\rho\mathrm{d}\rho=\cfrac{\pi}{6}-\cfrac{2}{9}. D1x2y2 dxdy=02πdθ0sinθ1ρ2 ρdρ=6π92.
  于是得
A = π 12 − 1 9 . A=\cfrac{\pi}{12}-\cfrac{1}{9}. A=12π91.
  从而
f ( x , y ) = 1 − x 2 − y 2 + 8 9 π − 2 3 . f(x,y)=\sqrt{1-x^2-y^2}+\cfrac{8}{9\pi}-\cfrac{2}{3}. f(x,y)=1x2y2 +9π832.
这道题主要利用了积分的部分常数的特点求解

9.计算下列三重积分:

(3) ∭ Ω ( y 2 + z 2 ) d v \displaystyle\iiint\limits_{\varOmega}(y^2+z^2)\mathrm{d}v Ω(y2+z2)dv,其中 Ω \varOmega Ω是由 x O y xOy xOy平面上曲线 y 2 = 2 x y^2=2x y2=2x x x x轴旋转而成的曲面与平面 x = 5 x=5 x=5所围成的闭区域。

  积分区域 Ω \varOmega Ω由旋转抛物面 y 2 + z 2 = 2 x y^2+z^2=2x y2+z2=2x和平面 x = 5 x=5 x=5所围成, Ω \varOmega Ω y O z yOz yOz面上的投影区域
D y z = { ( y , z ) ∣ y 2 + z 2 ⩽ 10 } . D_{yz}=\{(y,z)|y^2+z^2\leqslant10\}. Dyz={(y,z)y2+z210}.
  因此 Ω \varOmega Ω可表示成为
1 2 ( y 2 + z 2 ) ⩽ x ⩽ 5 , 0 ⩽ y 2 + z 2 ⩽ 10. \cfrac{1}{2}(y^2+z^2)\leqslant x\leqslant5,\quad0\leqslant y^2+z^2\leqslant10. 21(y2+z2)x5,0y2+z210.
  于是
∭ Ω ( y 2 + z 2 ) d v = ∬ D y z ( y 2 + z 2 ) d y d z ∫ y 2 + z 2 2 5 d x = ∬ D y z ( y 2 + z 2 ) ( 5 − y 2 + z 2 2 ) d y d z = 极坐标 ∬ D y z ρ 2 ( 5 − ρ 2 2 ) ρ d ρ d θ = ∫ 0 2 π d θ ∫ 0 10 ρ 3 ( 5 − ρ 2 2 ) d ρ = 250 3 π . \begin{aligned} \displaystyle\iiint\limits_{\varOmega}(y^2+z^2)\mathrm{d}v&=\displaystyle\iint\limits_{D_{yz}}(y^2+z^2)\mathrm{d}y\mathrm{d}z\displaystyle\int^5_{\frac{y^2+z^2}{2}}\mathrm{d}x\\ &=\displaystyle\iint\limits_{D_{yz}}(y^2+z^2)\left(5-\cfrac{y^2+z^2}{2}\right)\mathrm{d}y\mathrm{d}z\\ &\xlongequal{\text{极坐标}}\displaystyle\iint\limits_{D_{yz}}\rho^2\left(5-\cfrac{\rho^2}{2}\right)\rho\mathrm{d}\rho\mathrm{d}\theta\\ &=\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^{\sqrt{10}}_0\rho^3\left(5-\cfrac{\rho^2}{2}\right)\mathrm{d}\rho\\ &=\cfrac{250}{3}\pi. \end{aligned} Ω(y2+z2)dv=Dyz(y2+z2)dydz2y2+z25dx=Dyz(y2+z2)(52y2+z2)dydz极坐标 Dyzρ2(52ρ2)ρdρdθ=02πdθ010 ρ3(52ρ2)dρ=3250π.
这道题主要利用了另一个面的投影求解

10.设函数 f ( x ) f(x) f(x)连续且恒大于零, F ( t ) = ∭ Ω ( t ) f ( x 2 + y 2 + z 2 ) d v ∬ D ( t ) f ( x 2 + y 2 ) d σ , G ( t ) = ∬ D ( t ) f ( x 2 + y 2 ) d σ ∫ − t t f ( x 2 ) d x , F(t)=\cfrac{\displaystyle\iiint\limits_{\varOmega(t)}f(x^2+y^2+z^2)\mathrm{d}v}{\displaystyle\iint\limits_{D(t)}f(x^2+y^2)\mathrm{d}\sigma},\\G(t)=\cfrac{\displaystyle\iint\limits_{D(t)}f(x^2+y^2)\mathrm{d}\sigma}{\displaystyle\int^t_{-t}f(x^2)\mathrm{d}x}, F(t)=D(t)f(x2+y2)dσΩ(t)f(x2+y2+z2)dv,G(t)=ttf(x2)dxD(t)f(x2+y2)dσ,其中 Ω ( t ) = { ( x , y , z ) ∣ x 2 + y 2 + z 2 ⩽ t 2 } , D ( t ) = { ( x , y ) ∣ x 2 + y 2 ⩽ t 2 } . \varOmega(t)=\{(x,y,z)|x^2+y^2+z^2\leqslant t^2\},D(t)=\{(x,y)|x^2+y^2\leqslant t^2\}. Ω(t)={(x,y,z)x2+y2+z2t2},D(t)={(x,y)x2+y2t2}.

(1)讨论 F ( t ) F(t) F(t)在区间 ( 0 , + ∞ ) (0,+\infty) (0,+)内的单调性;

  利用球面坐标,
∭ Ω ( t ) f ( x 2 + y 2 + z 2 ) d v = ∫ 0 2 π d θ ∫ 0 π sin ⁡ φ d φ ∫ 0 t f ( r 2 ) r 2 d r = 4 π ∫ 0 t f ( r 2 ) r 2 d r . \displaystyle\iiint\limits_{\varOmega(t)}f(x^2+y^2+z^2)\mathrm{d}v=\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^\pi_0\sin\varphi\mathrm{d}\varphi\displaystyle\int^t_0f(r^2)r^2\mathrm{d}r=4\pi\displaystyle\int^t_0f(r^2)r^2\mathrm{d}r. Ω(t)f(x2+y2+z2)dv=02πdθ0πsinφdφ0tf(r2)r2dr=4π0tf(r2)r2dr.
  利用极坐标,
∬ D ( t ) f ( x 2 + y 2 ) d σ = ∫ 0 2 π d θ ∫ 0 t f ( ρ 2 ) ρ d ρ = 2 π ∫ 0 t f ( ρ 2 ) ρ d ρ = 2 π ∫ 0 t f ( r 2 ) r d r . \begin{aligned} \displaystyle\iint\limits_{D(t)}f(x^2+y^2)\mathrm{d}\sigma&=\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^t_0f(\rho^2)\rho\mathrm{d}\rho=2\pi\displaystyle\int^t_0f(\rho^2)\rho\mathrm{d}\rho\\ &=2\pi\displaystyle\int^t_0f(r^2)r\mathrm{d}r. \end{aligned} D(t)f(x2+y2)dσ=02πdθ0tf(ρ2)ρdρ=2π0tf(ρ2)ρdρ=2π0tf(r2)rdr.
  于是
F ( t ) = 2 ∫ 0 t f ( r 2 ) r 2 d r ∫ 0 t f ( r 2 ) r d r . F(t)=\cfrac{2\displaystyle\int^t_0f(r^2)r^2\mathrm{d}r}{\displaystyle\int^t_0f(r^2)r\mathrm{d}r}. F(t)=0tf(r2)rdr20tf(r2)r2dr.
  求导得
F ′ ( t ) = 2 t f ( t 2 ) ∫ 0 t f ( r 2 ) r ( t − r ) d r [ ∫ 0 t f ( r 2 ) r d r ] 2 . F'(t)=\cfrac{2tf(t^2)\displaystyle\int^t_0f(r^2)r(t-r)\mathrm{d}r}{\left[\displaystyle\int^t_0f(r^2)r\mathrm{d}r\right]^2}. F(t)=[0tf(r2)rdr]22tf(t2)0tf(r2)r(tr)dr.
  所以在区间 ( 0 , + ∞ ) (0,+\infty) (0,+)内, F ′ ( t ) > 0 F'(t)>0 F(t)>0,故 F ( t ) F(t) F(t) ( 0 , + ∞ ) (0,+\infty) (0,+)内单调增加。

(2)证明当 t > 0 t>0 t>0时, F ( t ) > 2 π G ( t ) F(t)>\cfrac{2}{\pi}G(t) F(t)>π2G(t)

  因为 f ( x 2 ) f(x^2) f(x2)为偶函数,故
∫ − t t f ( x 2 ) d x = 2 ∫ 0 t f ( x 2 ) d x = 2 ∫ 0 t f ( r 2 ) d r \displaystyle\int^t_{-t}f(x^2)\mathrm{d}x=2\displaystyle\int^t_{0}f(x^2)\mathrm{d}x=2\displaystyle\int^t_{0}f(r^2)\mathrm{d}r ttf(x2)dx=20tf(x2)dx=20tf(r2)dr
  所以
G ( t ) = ∫ 0 2 π d θ ∫ 0 t f ( r 2 ) r d r 2 ∫ 0 t f ( r 2 ) d r = π ∫ 0 t f ( r 2 ) r d r ∫ 0 t f ( r 2 ) d r . G(t)=\cfrac{\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^t_0f(r^2)r\mathrm{d}r}{2\displaystyle\int^t_0f(r^2)\mathrm{d}r}=\cfrac{\pi\displaystyle\int^t_0f(r^2)r\mathrm{d}r}{\displaystyle\int^t_0f(r^2)\mathrm{d}r}. G(t)=20tf(r2)dr02πdθ0tf(r2)rdr=0tf(r2)drπ0tf(r2)rdr.
  要证明 t > 0 t>0 t>0时, F ( t ) > π 2 G ( t ) F(t)>\cfrac{\pi}{2}G(t) F(t)>2πG(t),即证
2 ∫ 0 t f ( r 2 ) r 2 d r ∫ 0 t f ( r 2 ) r d r > 2 ∫ 0 t f ( r 2 ) r d r ∫ 0 t f ( r 2 ) d r . \cfrac{2\displaystyle\int^t_0f(r^2)r^2\mathrm{d}r}{\displaystyle\int^t_0f(r^2)r\mathrm{d}r}>\cfrac{2\displaystyle\int^t_0f(r^2)r\mathrm{d}r}{\displaystyle\int^t_0f(r^2)\mathrm{d}r}. 0tf(r2)rdr20tf(r2)r2dr>0tf(r2)dr20tf(r2)rdr.
  只需证当 t > 0 t>0 t>0时, H ( t ) = ∫ 0 t f ( r 2 ) r 2 d r ⋅ ∫ 0 t f ( r 2 ) d r − [ ∫ 0 t f ( r 2 ) r d r ] 2 H(t)=\displaystyle\int^t_0f(r^2)r^2\mathrm{d}r\cdot\displaystyle\int^t_0f(r^2)\mathrm{d}r-\left[\displaystyle\int^t_0f(r^2)r\mathrm{d}r\right]^2 H(t)=0tf(r2)r2dr0tf(r2)dr[0tf(r2)rdr]2。由于 H ( 0 ) = 0 H(0)=0 H(0)=0,且
H ′ ( t ) = f ( t 2 ) ∫ 0 t f ( r 2 ) ( t − r ) 2 d r > 0. H'(t)=f(t^2)\displaystyle\int^t_0f(r^2)(t-r)^2\mathrm{d}r>0. H(t)=f(t2)0tf(r2)(tr)2dr>0.
  所以 H ( t ) H(t) H(t) ( 0 , + ∞ ) (0,+\infty) (0,+)内单调增加,又 H ( t ) H(t) H(t) [ 0 , + ∞ ) [0,+\infty) [0,+)上连续,故当 t > 0 t>0 t>0时,
H ( t ) > H ( 0 ) = 0. H(t)>H(0)=0. H(t)>H(0)=0.
  因此当 t > 0 t>0 t>0时,有
F ( t ) > 2 π G ( t ) . F(t)>\cfrac{2}{\pi}G(t). F(t)>π2G(t).
这道题主要利用了极坐标积分求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值