Seurat V5标准分析流程(自备合集)

2015年,一款开创性的单细胞分析工具Seurat首次亮相,从这以后单细胞分析得到了广泛普及,不久前Seurat重磅推出了V5版本。今天给大家分享Seurat V5的标准分析流程。

单细胞专题 | 从GEO数据库中下载并批量读取单细胞数据——10X标准文件 (qq.com)

单细胞专题 | Seurat V5标准分析流程 (qq.com)

细胞专题 | Seurat V5 一行代码去除批次效应

Seurat V5有多种去批次方法:

用Seurat V5中新增的IntegrateLayers函数,可以实现一行代码去批次,当前支持以下几种主流的单细胞去批次,其中包含了我们上面用到的harmony。注意去批次前可能需要分层。

Anchor-based CCA integration (method=CCAIntegration) 

Anchor-based RPCA integration (method=RPCAIntegration) 

harmony (method=HarmonyIntegration) 

FastMNN (method= FastMNNIntegration) 

单细胞专题 | Seurat V5 一行代码去除批次效应 (qq.com)

单细胞专题 | 细胞类型注释的十八般武艺 (qq.com)

单细胞专题 | AverageHeatmap一键玩转差异基因热图 (qq.com)

单细胞专题 | 细胞比例可视化的千层套路 (qq.com)

单细胞专题 | 对某一类细胞深入探索——细胞的提取与亚型细分 (qq.com)

Seurat v5 是一个用于单细胞转录组数据分析的流行R包,它提供了一种高效的方式来处理和分析单细胞RNA测序数据。在v5版本中,如果你想要将多个样本的数据合并到一个`SeuratObject`(层,Layer)里,你可以按照以下步骤操作: 1. **加载数据**:首先,你需要分别对每个样本的数据文件(通常为 `.h5ad` 格式)进行读取,可以使用 `CreateSeuratObject()` 函数。 ```r library(Seurat) # 对于每个样本 sample_1 <- Read10X_mtx("path/to/sample1/raw_data") sample_1 <- CreateSeuratObject(sample_1, ...) sample_2 <- Read10X_mtx("path/to/sample2/raw_data") sample_2 <- CreateSeuratObject(sample_2, ...) ``` 2. **整合数据**:创建完每个样本的对象后,可以使用 `AddData()` 或 `Merge()` 函数将它们合并到同一个 `SeuratObject` 中。假设你想要基于每个细胞的基因表达值合并,可以这样做: ```r # 如果所有样本来自同一平台,可以直接Merge combined <- Merge(sample_1, sample_2) # 如果需要考虑技术差异,可能先需要对每个样本进行正常化、质量控制等预处理步骤 normalized_sample_1 <- NormalizeData(sample_1) normalized_sample_2 <- NormalizeData(sample_2) combined <- Merge(normalized_sample_1, normalized_sample_2) ``` 3. **标记样本标识**:为了以后能够区分每个样本的来源,可以在 `Combined` 对象上添加一个新的列或标志: ```r combined$sample_id <- c("Sample1", "Sample2") # 或者根据实际样本名称 ``` 现在,`combined` 就是一个包含了多个样本数据的 Seurat 层了。你可以一起进行后续的分析如绘图、聚类等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值